Tau prevents synaptic transmission at early stage of neurodegeneration

May 19, 2017

Tau proteins are involved in more than twenty neurodegenerative diseases, including various forms of dementia. These proteins clump together in patients' brains to form neuronal tangles: protein aggregation that eventually coincides with the death of brain cells. Prof. Patrik Verstreken's research team (VIB-KU Leuven) has now discovered how tau disrupts the functioning of nerve cells, even before it starts forming tangles. They immediately suggest a way to intervene in this process.

Tau proteins are best known as the proteins that are stacked to form neuronal "tangles" in Alzheimer's patients' brains, but they also play a role in many other brain disorders such as Parkinson's and Huntington's disease. In healthy circumstances, are connected to the cytoskeleton of , where they support the cells' structural stability. In the nerve cells of patients, however, tau is dislodged from the cytoskeleton and ultimately tangles together to form protein accumulations that disrupt the nerve cell's functioning.

Early spoilsport

But even before these protein accumulations are formed, the dislodged tau impedes the communication between nerve cells. VIB's research team has described a new mechanism for this in the journal Nature Communications.

Professor Patrik Verstreken (VIB-KU Leuven) explains: "We have demonstrated that when mutant tau dislodges from the cytoskeleton, it mainly settles at the synapses of the nerve cells. This was not only the case in and rats but also in the of human patients. Vesicles containing chemicals are released at these synapses, which serve as the means of communication between two different nerve cells. When tau settles at the synapse, it locks onto the vesicles, inhibiting ."

Fundamental research with prospects for therapeutic applications

These new insights are the result of a close collaboration between different laboratories at VIB, the universities of Leuven, Louvain-la-Neuve (both in Belgium), and Edinburgh (UK), and with researchers from Janssen Pharmaceutica. They pave the way for a possible treatment.

"Now that we know how tau inhibits synaptic transmission, we can look for ways to prevent it." Patrik Verstreken already provided proof of principle: "If we stop tau from locking onto the vesicles in the nerve cells of rats and fruit flies, we can prevent the inhibition of synaptic transmission and also the death of nerve ." Further research should reveal whether this strategy will also be useful for patients.

Explore further: Researchers reveal how neurodegenerative diseases spread through the brain

More information: Lujia Zhou et al, Tau association with synaptic vesicles causes presynaptic dysfunction, Nature Communications (2017). DOI: 10.1038/NCOMMS15295

Related Stories

Flies the key to studying the causes of dementia

May 19, 2017

A research team from the University of Plymouth, University of Southampton and the Alexander Fleming Biomedical Sciences Research Center, Vari, Greece, have studied two structurally-similar proteins in the adult brain and ...

Scientists track down possible new treatment for epilepsy

September 26, 2016

Increasing the concentration of specific fats in the brain could suppress epileptic seizures. This is evident from ground-breaking research carried out by the research groups of Professor Patrik Verstreken (VIB-KU Leuven) ...

Recommended for you

People match confidence levels to make decisions in groups

May 26, 2017

When trying to make a decision with another person, people tend to match their confidence levels, which can backfire if one person has more expertise than the other, finds a new study led by UCL and University of Oxford researchers.

Optic probes shed light on binge-eating

May 26, 2017

Activating neurons in an area of the brain not previously associated with feeding can produce binge-eating behavior in mice, a new Yale study finds.

Study finds gray matter density increases during adolescence

May 26, 2017

For years, the common narrative in human developmental neuroimaging has been that gray matter in the brain - the tissue found in regions of the brain responsible for muscle control, sensory perception such as seeing and hearing, ...

Game study not playing around with PTSD relief

May 26, 2017

Post-traumatic stress disorder (PTSD) patients wrestling with one of its main symptoms may find long-term relief beyond medication thanks to the work of a Western researcher.

Researchers identify brain network organization changes

May 25, 2017

As children age into adolescence and on into young adulthood, they show dramatic improvements in their ability to control impulses, stay organized, and make decisions. Those executive functions of the brain are key factors ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.