Cells that make blood vessels can also make tumors and enable their spread

June 19, 2017
Dr. Lan Ko, cancer biologist in the Department of Pathology at MCG at Augusta University and Dr. Ali S. Arbab, a tumor angiogenesis expert at the Georgia Cancer Center and the MCG Department of Biochemistry and Molecular Biology, was a major collaborator. Credit: Phil Jones

While it's widely held that tumors can produce blood vessels to support their growth, scientists now have evidence that cells key to blood vessel formation can also produce tumors and enable their spread.

"Today we actually propose that blood vessels can form tumors and then the whole picture becomes a cycle," said Dr. Lan Ko, cancer biologist in the Department of Pathology at the Medical College of Georgia at Augusta University.

Ko is corresponding author of the study in the journal Oncotarget that provides some of the first evidence of the vicious cycle that appears to support cancer but also provides a potential new target for interference.

Dr. Ali S. Arbab, a angiogenesis expert at the Georgia Cancer Center and the MCG Department of Biochemistry and Molecular Biology, was a major collaborator.

Pericytes are strong contractile that form the initial outer layer that gives shape and strength to a developing blood . They also are stem-cell like in that they can make many different kinds of tissue. GT198 is a gene normally expressed in low levels in our bodies and known for its natural ability to repair DNA and regulate stem cells, but can become an oncogene when mutated.

Scientists have now found abnormally high levels of GT198 in the pericytes of the vascular network supporting a wide variety of human tumors. When activated, GT198 was also oddly located in the pericytes' cytoplasm rather than the nucleus.

They documented these high GT198-expressing pericytes in 14 different human cancers, including brain, lung, kidney, thyroid, prostate and bladder cancers. They documented their presence as well in six different animal models of a variety of cancers.

They also noted an additional and dangerous role for these malignant pericytes.

In human oral cancer, for example, they found malignant pericytes were abnormally thick and abundant in the blood vessel walls. Pericytes also proliferated into and even detached from blood vessels apparently to enable the cancer's spread, the scientists report.

"Blood vessels can actually make tumors," Ko said. "This is a bit of a new idea that does not negate the fact that tumors also make blood vessels. But we believe instead provides the other half of the story."

Even in advanced tumors, the pericytes continued to make tumor cells. In this scenario, the highest level of GT198 expression was associated with decreased patient survival in the 40 patients whose tissues and clinical outcomes they examined. By contrast, GT198 expression was essentially nonexistent in normal oral cavity tissue that did not have this abnormal proliferation of blood vessels.

In an animal model of the aggressive brain tumor glioblastoma, they saw malignant pericytes from human tumors wrap around , as they would to form blood vessels, but they also formed tumors.

Malignant pericytes made a huge number of blood vessels as they captured the normal endothelial cells, and then prompted the endothelial cells to keep growing as well. Some of the small vessels or capillaries became larger tumor-lined blood vessels and then tumors. The scientists noted the passageway, or lumen, of the former blood vessels were still visible in some tumors. In a normal scenario, pericytes actually help control growth, Ko noted.

When they gave what was essentially a vaccine against GT198, it delayed tumor growth and prolonged mouse survival.

Together the new findings point toward GT198 as an efficient and effective cancer treatment target, said Ko. She is looking further at existing cancer drugs, which she has found directly target GT198, and exploring natural new ones.

Production of new blood vessels normally occurs during development and to help repair injuries. Cancer hijacks this normal biological response to support its growth. Normally, the endothelial cells that line vessels are laid down, then contractile pericytes arrive to encompass the endothelial cells to stabilize them and form the exterior layer of . Over time, pericytes develop into even sturdier .

Ko and her colleagues reported last year that the gene GT198, which normally actually reduces cancer risk by repairing damaged DNA, appears to cause breast when mutated in the pericytes that make breast tissue.

Explore further: Breast cancer spread may be tied to cells that regulate blood flow

Related Stories

Breast cancer spread may be tied to cells that regulate blood flow

February 19, 2015
Tumors require blood to emerge and spread. That is why scientists at The University of Texas MD Anderson Cancer Center believe that targeting blood vessel cells known as pericytes may offer a potential new therapeutic approach ...

New gene identified as cause, early indicator of breast cancer

March 18, 2016
When mutated, a gene known for its ability to repair DNA, appears to instead cause breast cancer, scientists report.

Loss of pericytes deteriorates retinal environment

May 16, 2017
Inside the eye, at the interface between blood vessels and the retina, lies a boundary that prevents harmful substances present in the blood from entering the retina. Researchers at the Center for Vascular Research, within ...

The antibody that normalizes tumor vessels

December 12, 2016
An important parcel must be delivered to the correct place. It is so important that it can be a question of life or death. However, uneven streets and missing railings risk to bring it off the road and leave it undelivered. ...

Growing tumors put the pressure on nutrient-supplying blood vessels

January 26, 2017
Mechanical pressure caused by cancer growth plays a key role in the development and distribution of blood vessels in tumors, according to a new UCL (University College London) study published in PLOS Computational Biology.

Key protein may affect risk of stroke

June 26, 2015
Studies on mice reveal that a special protein in the brain's tiniest blood vessels may affect the risk of stroke. Peter Carlsson, professor in genetics at the University of Gothenburg, and his research team are publishing ...

Recommended for you

New strategy for unleashing cancer-fighting power of p53 gene

December 13, 2017
Tumor protein p53 is one of the most critical determinants of the fate of cancer cells, as it can determine whether a cell lives or dies in response to stress. In a new study published today in the journal Nature Communications, ...

Researchers develop test that can diagnose two cancer types

December 12, 2017
A blood test using infrared spectroscopy can be used to diagnose two types of cancer, lymphoma and melanoma, according to a study led by Georgia State University.

Cancer-causing mutation suppresses immune system around tumours

December 12, 2017
Mutations in 'Ras' genes, which drive 25% of human cancers by causing tumour cells to grow, multiply and spread, can also protect cancer cells from the immune system, finds a new study from the Francis Crick Institute and ...

Atoh1, a potential Achilles' heel of Sonic Hedgehog medulloblastoma

December 12, 2017
Medulloblastoma is the most common type of solid brain tumor in children. Current treatments offer limited success and may leave patients with severe neurological side effects, including psychiatric disorders, growth retardation ...

Drug suppresses spread of breast cancer caused by stem-like cells

December 12, 2017
Rare stem-like tumor cells play a critical role in the spread of breast cancer, but a vulnerability in the pathway that powers them offers a strategy to target these cells using existing drugs before metastatic disease occurs, ...

MRI scans predict patients' ability to fight the spread of cancer

December 12, 2017
A simple, non-invasive procedure that can indicate how long patients with cancer that has spread to the brain might survive and whether they are likely to respond to immunotherapy has been developed by researchers in Liverpool.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.