Genomic analysis of liver cancer reveals unexpected genetic players

June 16, 2017
Cancer cell during cell division. Credit: National Institutes of Health

Liver cancer has the second-highest worldwide cancer mortality, and yet there are limited therapeutic options to manage the disease. To learn more about the genetic causes of this cancer, and to identify potential new therapeutic targets for HCC, a nation-wide team of genomics researchers co-led by David Wheeler, Director of Cancer Genomics and Professor in the Human Genome Sequencing Center (HGSC) at Baylor College of Medicine, and Lewis Roberts, Professor of Medicine at the Mayo Clinic, analyzed 363 liver cancer cases from all over the world gathering genome mutations, epigenetic alteration through DNA methylation, RNA expression and protein expression. The research appears in Cell.

Part of the larger Cancer Genome Atlas project (TCGA), this work represents the first large scale, multi-platform analysis of HCC looking at numerous dimensions of the tumor. "There have been large-cohort studies in in the past, but they have been limited mainly to one aspect of the tumor, genome mutation. By looking at a wide variety of the tumor's molecular characteristics we get substantially deeper insights into the operation of the cancer cell at the molecular level," Wheeler said.

The research team made a number of interesting associations, including uncovering a major role of the . Through a combination of p53 mutation, DNA methylation and viral integrations, this pathway becomes aberrantly activated. The sonic hedgehog pathway, the role of which had not been full appreciated in liver cancer previously, is activated in nearly half of the samples analyzed in this study.

"We have a very active liver cancer community here at Baylor, so we had a great opportunity to work with them and benefit from their insights into liver cancer," Wheeler said. Among the many critical functions of the liver, hepatocytes expend a lot of energy in the production of albumin and urea. It was fascinating to realize how the liver cancer cell shuts these functions off, to its own purpose of tumor growth and cell division.

"Intriguingly, we found that the urea cycle enzyme carbamyl phosphate synthase is downregulated by hypermethylation, while cytoplasmic carbamyl phosphate synthase II is upregulated," said Karl-Dimiter Bissig, Assistant Professor of Molecular and Cellular Biology at Baylor and co-author of the study. "This might be explained by the anabolic needs of liver cancer, reprogramming glutamine pathways to favor pyrimidine production potentially facilitating DNA replication, which is beneficial to the cancer cell."

"Albumin and apolipoprotein B are unexpected members on the list of genes mutated in liver cancer. Although neither has any obvious connection to cancer, both are at the top of the list of products that the liver secretes into the blood as part of its ordinary functions," explained Dr. David Moore, professor of molecular and cellular biology at Baylor. "For the cancer cell, this secretion is a significant loss of raw materials, amino acids and lipids that could be used for growth. We proposed that mutation of these genes would give the a growth advantage by preventing this expensive loss."

Multiple data platforms coupled with clinical data allowed the researchers to correlate the molecular findings with clinical attributes of the tumor, leading to insights into the roles of its molecules and genes to help design new therapies and identify prognostic implications that have the potential to influence HCC clinical management and survivorship.

"This is outstanding research analyzing a cancer that's increasing in frequency, especially in Texas. Notably, the observation of gene expression signatures that forecast patient outcome, which we validate in external cohorts, is a remarkable achievement of the study. The results have the potential to mark a turning point in the treatment of this cancer," said Dr. Richard Gibbs, director of the HGSC at Baylor. The HGSC was also the DNA sequence production Center for the project.

Wheeler says they expect the data produced by this TCGA study to lead to new avenues for therapy in this difficult cancer for years to come. "There are inhibitors currently under development for the sonic hedgehog pathway, and our results suggest that those inhibitors, if they pass into phase one clinical trials, could be applied in patients, since the pathway is frequently activated in these patients," added Wheeler.

Explore further: Study identifies a role for the metabolism regulator PPAR-gamma in liver cancer

More information: Adrian Ally et al. Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma, Cell (2017). DOI: 10.1016/j.cell.2017.05.046

Related Stories

Study identifies a role for the metabolism regulator PPAR-gamma in liver cancer

April 10, 2017
Liver cancers are a major cause of cancer-related deaths. Large-scale genetic analyses have associated liver cancer with dysregulation of numerous molecular pathways, but disruptions in insulin signaling pathways appear to ...

Scrib protein identified as a natural suppressor of liver cancer

May 8, 2017
A protein that typically helps keep cells organized and on task becomes a tumor suppressor in the face of liver cancer, scientists say.

Monitoring sugar metabolism in liver may be a key to cancer diagnosis

April 18, 2016
Scientists may have discovered a significant new diagnostic marker for liver cancer, according to a paper published in the April 18 online issue of Nature Cell Biology.

Researchers develop algorithm to find precise cancer treatments

August 9, 2016
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze "Big Data" obtained from tumor samples to better understand and treat cancer.

Genome of Sezary syndrome points to potential treatment targets

November 10, 2015
A genomic analysis of 37 patients with Sézary syndrome, a rare form of T-cell lymphoma that affects the skin and causes large numbers of atypical T-lymphocytes (an immune system disease) to circulate, reveals mutations in ...

New subtypes of lung cancer can lead to personalized therapies with better outcome

October 24, 2016
Personalized therapies can potentially improve the outcomes of patients with lung cancer, but how to best design such an approach is not always clear. A team of scientists from Baylor College of Medicine and the University ...

Recommended for you

Scientists develop novel 'dot' system to improve cancer detection

August 24, 2017
Researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) have developed a proof-of-concept nanosystem that dramatically improves the visualization of tumors. Published today in Nature Communications, the platform ...

Study provides insight into link between two rare tumor syndromes

August 22, 2017
UCLA researchers have discovered that timing is everything when it comes to preventing a specific gene mutation in mice from developing rare and fast-growing cancerous tumors, which also affects young children. This mutation ...

Retaining one normal BRCA gene in breast, ovarian cancers influences patient survival

August 22, 2017
Determining which cancer patients are likely to be resistant to initial treatment is a major research effort of oncologists and laboratory scientists. Now, ascertaining who might fall into that category may become a little ...

Study identifies miR122 target sites in liver cancer and links a gene to patient survival

August 22, 2017
A new study of a molecule that regulates liver-cell metabolism and suppresses liver-cancer development shows that the molecule interacts with thousands of genes in liver cells, and that when levels of the molecule go down, ...

Zebrafish larvae could be used as 'avatars' to optimize personalized treatment of cancer

August 21, 2017
Portuguese scientists have for the first time shown that the larvae of a tiny fish could one day become the preferred model for predicting, in advance, the response of human malignant tumors to the various therapeutic drugs ...

Scientists discover vitamin C regulates stem cell function, curbs leukemia development

August 21, 2017
Not much is known about stem cell metabolism, but a new study from the Children's Medical Center Research Institute at UT Southwestern (CRI) has found that stem cells take up unusually high levels of vitamin C, which then ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.