Patching up a broken heart

June 19, 2017, University of Cambridge
Patching up a broken heart
Credit: The District and Jonathan Settle

It is almost impossible for an injured heart to fully mend itself. Within minutes of being deprived of oxygen – as happens during a heart attack when arteries to the heart are blocked – the heart's muscle cells start to die. Sanjay Sinha wants to mend these hearts so that they work again.

When the body's repair system kicks in, in an attempt to remove the dead heart cells, a thick layer of scar tissue begins to form. While this damage limitation process is vital to keep the heart pumping and the blood moving, the patient's problems have really only just begun.

Cardiac is different to the rest of the heart. It doesn't contract or pump because it doesn't contain any new . Those that are lost at the time of the never come back. This loss of function weakens the heart and, depending on the size of the damaged area, affects both the patient's quality of life and lifespan.

"In many patients, not only is their heart left much weaker than normal but they are unable to increase the amount of blood pumped around the body when needed during exercise," explains Dr Sanjay Sinha. "I've just walked up a flight of stairs… it's something I take for granted but many patients who've survived heart attacks struggle to do even basic things, like getting dressed. While there are treatments that improve the symptoms of , and some even improve survival to a limited extent, none of them tackles the underlying cause – the loss of up to a billion heart cells."

The numbers are stark. "Half a million people have heart failure in the UK. Almost half of them will not be alive in five years because of the damage to their heart. At present, the only way to really improve their heart function is to give them a heart transplant. There are only 200 heart transplants a year in the UK – it's a drop in the ocean when many thousands need them."

Sinha wants to mend these hearts so that they work again. "Not just by a few percent improvement but by a hundred percent."

He leads a team of stem cell biologists in the Cambridge Stem Cell Institute. Over the past five years, with funding from the British Heart Foundation, they have been working with materials scientists Professors Ruth Cameron and Serena Best and biochemist Professor Richard Farndale on an innovative technique for growing heart patches in the laboratory – with the aim of using these to repair weakened cardiac tissue.

"In the past, people have tried injecting cardiomyocytes into damaged hearts in animal models and shown that they can restore some of the muscle that's been lost," says Sinha. "But even in the best possible hands, ninety percent of the cells you inject are lost because of the hostile environment."

Instead, the Cambridge researchers are building tiny beating pieces of heart tissue in Petri dishes. The innovation that makes this possible is a scaffold. "The idea is to make a home for that really suits them to the ground. So they can survive and thrive and function."

Credit: University of Cambridge

The scaffold is made of collagen – a highly abundant protein in the animal kingdom. Best and Cameron are experts at creating complex collagen-based structures for a variety of cell types – bone marrow, breast cancer, musculoskeletal – both as implants and as model systems to test new therapeutics.

"The technology we've developed for culturing cells is exciting because it is adaptable to a huge range of applications – almost any situation where you're trying to regenerate new tissue," explains Best.

Best and Cameron use 'ice-templating' to build the scaffold. They freeze a solution of collagen, water and certain biological molecules. When the water crystals form, they push the other molecules to their boundaries. So, when the crystals are vapourised (by dropping the pressure to low levels), what's left is a complex three-dimensional warren.

"We have immense control over this structure," adds Cameron. "We can vary the pore structure to make cells align in certain orientations and control the ratios of cell types. We are building communities of millions of cells in an environment that resembles the heart."

Cardiomyocytes fare better when they are surrounded by other cell types and have something to hold on to. They use proteins on their surface called integrins to touch, stick to and communicate with their environment. Farndale has perfected a 'toolkit' that pinpoints exactly which parts of collagen the integrins bind best; he then makes matching peptide fragments to 'decorate' the collagen scaffold. This gives cells a foothold in the scaffold and encourages different cell types to move in and populate the structure.

"We don't just want a cardiac scaffold – we want it to have blood vessels and the same mechanical properties as the heart," explains Sinha. "If it's going to contract and function efficiently, it needs a really good blood supply. And the whole three-dimensional structure must be strong enough to survive the hostile environment of a damaged heart."

Meanwhile, Sinha's team pioneered the production of the different needed for the patch. Their starting material is human embryonic stem cells, but they have also taken adult human cells and 'reset' their dev

elopmental clock. "In theory this means we can take a patient's own cells and make patches that are identical to their own tissue. That said, millions of people are going to need this sort of therapy and so our focus at the moment is on coming up with a system where a small number of patches might be available 'off the shelf', with patients receiving the nearest match.

The team is completing tests on the ideal combination of scaffold structure, peptide decoration and mix of cells to create a beating vascularised tissue. Next, the researchers will work with Dr Thomas Krieg in the Department of Medicine to graft the tissue into a rat heart. Their aim is to show that the patch makes vascular connections, integrates mechanically and electrically with heart muscle, and contracts in synchrony with the rest of the heart. Once they've accomplished this, they will scale up the size of the patches for future use in people.

"It's exciting," says Sinha. "We are recreating a tissue that has all the components we see in an organ, where the start talking together in mysterious and wonderful ways, and they start to work together as they do in the body. Our vision is that this technology will bring hope to the millions of patients worldwide who are suffering from failure, and allow them to lead a normal life again."

Explore further: Cardiac stem cells from heart disease patients may be harmful

Related Stories

Cardiac stem cells from heart disease patients may be harmful

June 15, 2017
Patients with severe and end-stage heart failure have few treatment options available to them apart from transplants and "miraculous" stem cell therapy. But a new Tel Aviv University study finds that stem cell therapy may, ...

3-D-printed patch can help mend a 'broken' heart

April 14, 2017
A team of biomedical engineering researchers, led by the University of Minnesota, has created a revolutionary 3D-bioprinted patch that can help heal scarred heart tissue after a heart attack. The discovery is a major step ...

Tissue engineering advance reduces heart failure in model of heart attack

January 26, 2017
Researchers have grown heart tissue by seeding a mix of human cells onto a 1-micron-resolution scaffold made with a 3-D printer. The cells organized themselves in the scaffold to create engineered heart tissue that beats ...

Stem cell patch shows early promise in treating heart failure

April 5, 2017
Patching a damaged heart with a patient's own muscle stem cells improves symptoms of heart failure, according to a Phase I clinical trial reported in Journal of the American Heart Association, the Open Access Journal of the ...

Scientists create 'beating' human heart muscle for cardiac research

March 17, 2017
Scientists at The University of Queensland have taken a significant step forward in cardiac disease research by creating a functional 'beating' human heart muscle from stem cells.

Recommended for you

Aspirin could play valuable role as additional treatment for cancer

September 26, 2018
Regular use of aspirin could help in the treatment of some cancers, finds a new review of 71 medical studies.

Height may be risk factor for varicose veins, study finds

September 24, 2018
The taller you are, the more likely you are to develop varicose veins, according to a study led by Stanford University School of Medicine researchers that examined the genes of more than 400,000 people in search of clues ...

Physical activity necessary to maintain heart-healthy lifestyle

September 24, 2018
Exercise and physical activity are of vast global importance to prevent and control the increasing problem of heart disease and stroke, according to a review paper published today in the Journal of the American College of ...

Prosthetic valve mismatches common in transcatheter valve replacement, ups risk of death

September 24, 2018
In the largest multi-institutional study to date, led by researchers from Penn Medicine, the team found that among patients who underwent a transcatheter aortic valve replacement (TAVR), a high number experienced severe and ...

Study reveals a promising alternative to corticosteroids in acute renal failure treatment

September 21, 2018
A protein produced by the human body appears to be a promising new drug candidate to treat conditions that lead to acute renal failure. This is shown by a study conducted at São Paulo State University (UNESP) in São José ...

Can a common heart condition cause sudden death?

September 20, 2018
About one person out of 500 has a heart condition known as hypertrophic cardiomyopathy (HCM). This condition causes thickening of the heart muscle and results in defects in the heart's electrical system. Under conditions ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.