Researchers show how a protein prevents the uncontrolled expansion of immune cells

June 22, 2017
Expanding B-cell tumors. Credit: Michael Reth

The mammalian immune system consists of millions of individual cells that are produced daily from precursor cells in the bone marrow. During their development, immune cells undergo a rapid expansion, which is interrupted by phases of differentiation to more mature lymphocytes. Alternate phases of proliferation and differentiation occur also during the maturation of antibody-producing B cells. Researchers in Prof. Dr. Michael Reth's laboratory have come one step closer to understand how the proliferation to differentiation switch in B lymphocytes works, thereby providing new insights into the development of the most common types of tumors in children and potential therapies thereof.

The team has published its study in the journal Nature Immunology.

Because the switch induces differentiation, it limits the proliferation phase of , so-called pre-B cells. If differentiation is blocked, pre-B cells continue to proliferate and this can lead to pre-B cell leukemia. The researchers have shown that the switch factor is a complex with two components: a small adaptor protein called B cell translocation gene 2 (BTG2) and the protein arginine methyl transferase 1 (PRMT1). "We found that BTG2 is up-regulated upon pre-B cell differentiation and that an induced expression of BTG2 in pre-B cells stops their proliferation," explains Dr. Elmar Dolezal, the first author of the published paper. How the BTG2/PRMT1 complex stops pre-B cell proliferation was shown by Dr. David Medgyesi: once activated by BTG2, PRMT1 specifically methylates the protein CDK4, thereby preventing its function in the cell cycle and further cell proliferation.

Interestingly, many have either deleted the BTG2 gene or have silenced it. For example it is hardly expressed in B-Cell acute lymphoblastic leukemia (B-ALL), the most common type of cancer in children. Using a mouse model, the authors of the study have shown that reintroducing BTG2 in such B-ALL cells prevents further tumor development. "We have discovered how BTG2 works as a tumor suppressor in pre-B cells and this may help to better understand and possibly develop a better treatment of B-ALL tumors," summarizes Reth. "It will be important in the future to explore the exact mechanisms for expression and regulation of the BTG2 gene and to find ways in which we can introduce BTG2 in B-cell tumors to patients and thereby block the tumor ' proliferation."

Explore further: Study identifies molecule that limits excessive expansion of heart muscle cells

More information: Elmar Dolezal et al. The BTG2-PRMT1 module limits pre-B cell expansion by regulating the CDK4-Cyclin-D3 complex, Nature Immunology (2017). DOI: 10.1038/ni.3774

Related Stories

Study identifies molecule that limits excessive expansion of heart muscle cells

October 31, 2016
When the heart is subjected to stress, such as high blood pressure, it responds by expanding, both at the level of the whole organ and some of its chambers, and also at the level of single cells. Although the swelling of ...

Genetic control of immune cell proliferation

April 19, 2017
Germinal centers are transient structures in the lymph nodes where antibody-producing B cells proliferate and differentiate at extraordinary rates. Germinal centers can be visually divided into a dark zone and light zone. ...

Tumor suppressor promotes some acute myeloid leukemias, study reveals

February 17, 2017
Researchers in Germany have discovered that a tumor suppressor protein thought to prevent acute myeloid leukemia (AML) can actually promote a particularly deadly form of the disease. The study, "RUNX1 cooperates with FLT3-ITD ...

New findings on neurogenesis in the spinal cord

March 5, 2014
Research from Karolinska Institutet in Sweden suggests that the expression of the so called MYC gene is important and necessary for neurogenesis in the spinal cord. The findings are being published in the journal EMBO Reports.

Simple pre-treatment ensures safe neural cell transplants

March 27, 2017
Stem cell and progenitor cell neural studies have shown great promise for cell-based treatments of central nervous system disorders. However while transplants have demonstrated initial success in retrieving motor function, ...

Recommended for you

The skinny on lipid immunology

October 20, 2017
Phospholipids - fat molecules that form the membranes found around cells - make up almost half of the dry weight of cells, but when it comes to autoimmune diseases, their role has largely been overlooked. Recent research ...

Bacterial pathogens outwit host immune defences via stealth mechanisms

October 20, 2017
Despite their relatively small genome in comparison to other bacteria, mycoplasmas can cause persistent and often difficult-to-treat infections in humans and animals. An extensive study by researchers from Vetmeduni Vienna ...

Scientists find where HIV 'hides' to evade detection by the immune system

October 19, 2017
In a decades-long game of hide and seek, scientists from Sydney's Westmead Institute for Medical Research have confirmed for the very first time the specific immune memory T-cells where infectious HIV 'hides' in the human ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

Researchers release the brakes on the immune system

October 18, 2017
Many tumors possess mechanisms to avoid destruction by the immune system. For instance, they misuse the natural "brakes" in the immune defense mechanism that normally prevent an excessive immune response. Researchers at the ...

How cytoplasmic DNA triggers inflammation in human cells

October 17, 2017
A team led by LMU's Veit Hornung has elucidated the mechanism by which human cells induce inflammation upon detection of cytoplasmic DNA. Notably, the signal network involved differs from that used in the same context in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.