Designed proteins to treat muscular dystrophy

June 28, 2017
A cross section of a muscle biopsy: Blood vessels (red) between the muscle fibers and laminin-α2 (green), which surrounds each muscle fiber. Credit: University of Basel, Biozentrum

The cell scaffolding holds muscle fibers together and protects them from damage. Individuals who suffer from muscular dystrophy often lack essential components in this cell scaffold. As a result, their muscles lack strength and become progressively weaker. The research team of Prof. Markus Rüegg at the Biozentrum, University of Basel, has now designed two proteins that stabilize the cell scaffolding link it to the muscle fiber and thereby restore muscle structure and function. Their findings are published in the current issue of Science Translational Medicine.

Muscular dystrophy is a term used to describe many different muscular diseases caused by genetic defects. To date, there are no treatments available to stop disease progression. In their study, the scientists led by Prof. Markus Rüegg have investigated a specific type of , called . In an animal model, they demonstrated for the first time that two proteins designed by the researchers not only recover and increase body weight in the sick animals but also significantly prolong survival.

Severe impairments due to congenital muscular dystrophy

Congenital muscular dystrophy is a rare and severe form of a muscular dystrophy that presents at birth or during infancy. "The children born with this disease are also called ?floppy infants? because of the poor muscle tone and weakness," says Judith Reinhard, first author of the study. "The disease becomes more severe with increasing age, as the progresses." Affected children are often unable to walk independently or they lose this ability with age. The respiratory muscles are also affected. The lifespan is often short and many patients die before reaching adulthood.

Muscular dystrophy disrupts critical linkages that keep muscle fibers intact, and scientists genetically engineered mice to express special mag proteins to restore lost connections. Credit: J.R. Reinhard et al., Science Translational Medicine (2017)

Defective gene - defective cell scaffolding

This form of muscular dystrophy results from a genetic defect in laminin-α2. This protein is a key component of the cell scaffolding and connects it with the inner part of the , ensuring the stability of the tissue. Consequently, as a result of gene defects in laminin-α2 the muscles are extremely unstable and even normal use of the muscles leads to muscle injuries, inflammation and finally to the degeneration of muscle fibers. In these diseased muscles, which are unable to produce laminin-α2, another laminin takes over. This , called laminin-α4, however, is only a poor replacement because it is not well integrated into the cell scaffolding.

Proteins anchor cell scaffolding and stabilize muscle fibers

The researchers designed two proteins that allow the integration of laminin-α4 and anchor it to the muscle cell. "Using these linkers, we were able to stabilize the muscle fibers," explains Rüegg. "When animals with a laminin-α2 defect express the two linkers, there was a significant improvement in and force and an increase in body weight. We were particularly pleased to observe that these animals also had an almost normal lifespan. Some of them even survived their healthy siblings." Furthermore, the scientists examined muscle biopsies of patients with congenital muscular dystrophy. They found very similar structural defects and laminin-α4 was also found in place of laminin-α2 in the diseased muscle fibers.

"Both of the designed linker proteins may possibly be used in the future as a gene therapy treatment for congenital muscular dystrophy," says Rüegg. "Our study is a nice example of how the understanding of a disease on the molecular and cellular level results in new therapeutic options. We are now interested in whether these linker proteins also improve function as well as affect survival in advanced stages of congenital muscular dystrophy."

Explore further: New target may slow disease progression in Duchenne muscular dystrophy

More information: J.R. Reinhard el al., "Linker proteins restore basement membrane and correct LAMA2-related muscular dystrophy in mice," Science Translational Medicine (2017). stm.sciencemag.org/lookup/doi/ … scitranslmed.aal4649

Related Stories

New target may slow disease progression in Duchenne muscular dystrophy

September 12, 2016
Duchenne muscular dystrophy is a chronic disease causing severe muscle degeneration that is ultimately fatal. As the disease progresses, muscle precursor cells lose the ability to create new musclar tissue, leading to faster ...

New insights into muscular dystrophy point to potential treatment avenues

June 1, 2016
The average healthy man is 54 percent muscle by mass, but people with muscular dystrophy, an incurable, genetic condition, have almost no muscle at terminal stages of the disease. New research from The Rockefeller University ...

Researchers find genetic cause of new type of muscular dystrophy

February 9, 2017
A newly discovered mutation in the INPP5K gene, which leads to short stature, muscle weakness, intellectual disability, and cataracts, suggests a new type of congenital muscular dystrophy. The research was published in the ...

Muscular dystrophy: Repair the muscles, not the genetic defect

September 14, 2014
A potential way to treat muscular dystrophy directly targets muscle repair instead of the underlying genetic defect that usually leads to the disease.

Researchers review muscular dystrophy therapies

June 22, 2012
Leading muscular dystrophy researcher Dean Burkin, of the University of Nevada School of Medicine summarizes the impact of a new protein therapeutic, MG53, for the treatment of Duchenne muscular dystrophy in an article published ...

Recommended for you

Researchers describe mechanism that underlies age-associated bone loss

September 22, 2017
A major health problem in older people is age-associated osteoporosis—the thinning of bone and the loss of bone density that increases the risk of fractures. Often this is accompanied by an increase in fat cells in the ...

Researchers develop treatment to reduce rate of cleft palate relapse complication

September 22, 2017
Young people with cleft palate may one day face fewer painful surgeries and spend less time undergoing uncomfortable orthodontic treatments thanks to a new therapy developed by researchers from the UCLA School of Dentistry. ...

Exosomes are the missing link to insulin resistance in diabetes

September 21, 2017
Chronic tissue inflammation resulting from obesity is an underlying cause of insulin resistance and type 2 diabetes. But the mechanism by which this occurs has remained cloaked, until now.

Thousands of new microbial communities identified in human body

September 20, 2017
A new study of the human microbiome—the trillions of microbial organisms that live on and within our bodies—has analyzed thousands of new measurements of microbial communities from the gut, skin, mouth, and vaginal microbiome, ...

Study finds immune system is critical to regeneration

September 20, 2017
The answer to regenerative medicine's most compelling question—why some organisms can regenerate major body parts such as hearts and limbs while others, such as humans, cannot—may lie with the body's innate immune system, ...

Immune cells produce wound healing factor, could lead to new IBD treatment

September 20, 2017
Specific immune cells have the ability to produce a healing factor that can promote wound repair in the intestine, a finding that could lead to new, potential therapeutic treatments for inflammatory bowel disease (IBD), according ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.