Brains are more plastic than we thought

July 19, 2017, McGill University
Researchers have demonstrated that with the right training, the brains of primates will begin using completely different regions to perform the same tasks. Credit: Pack Lab

Practice might not always make perfect, but it's essential for learning a sport or a musical instrument. It's also the basis of brain training, an approach that holds potential as a non-invasive therapy to overcome disabilities caused by neurological disease or trauma.

Research at the Montreal Neurological Institute and Hospital of McGill University (The Neuro) has shown just how adaptive the brain can be, knowledge that could one day be applied to recovery from conditions such as stroke.

Researchers Dave Liu and Christopher Pack have demonstrated that practice can change the way that the brain uses sensory information. In particular, they showed that, depending on the type of training done beforehand, a part of the brain called the area middle temporal (MT) can be either critical for , or not important at all.

Previous research has shown the area MT is involved in visual perception. Damage to area MT causes "motion blindness", in which patients have clear vision for stationary objects but are unable to see motion. Such deficits are somewhat mysterious, because it is well known that area MT is just one of many involved in visual motion perception. This suggests that other pathways might be able to compensate in the absence of area MT.

Most studies have examined the function of area MT using a task in which subjects view small dots moving across a screen and indicate how they see the dots moving, because this has been proven to activate area MT. To determine how crucial MT really was for this task, Liu and Pack used a simple trick: They replaced the moving dots with moving lines, which are known to stimulate areas outside area MT more effectively. Surprisingly, subjects who practiced this task were able to perceive visual motion perfectly even when area MT was temporarily inactivated.

On the other hand, subjects who practiced with moving dots exhibited motion blindness when MT was temporarily deactivated. The motion blindness persisted even when the stimulus was switched back to the moving lines, indicating that the effects of practice were very difficult to undo. Indeed, the effects of practice with the moving dot stimuli were detectable for weeks afterwards. The key lesson for is that small differences in the training regimen can lead to profoundly different changes in the brain.

This has potential for future clinical use. Stroke patients, for example, often lose their vision as a result of brain damage caused by lack of blood flow to brain cells. With the correct training stimulus, one day these patients could retrain their brains to use different regions for vision that were not damaged by the stroke.

"Years of basic research have given us a fairly detailed picture of the parts of the brain responsible for vision," says Christopher Pack, the paper's senior author. "Individual parts of the cortex are exquisitely sensitive to specific visual features - colors, lines, shapes, motion - so it's exciting that we might be able to build this knowledge into protocols that aim to increase or decrease the involvement of different regions in conscious visual perception, according to the needs of the subject. This is something we're starting to work on now."

Their research was published in the journal Neuron on July 19, 2017.

Explore further: Retraining the brain to see after stroke

More information: Liu D. Liu et al, The Contribution of Area MT to Visual Motion Perception Depends on Training, Neuron (2017). DOI: 10.1016/j.neuron.2017.06.024

Related Stories

Retraining the brain to see after stroke

April 12, 2017
Patients who went partially blind after suffering a stroke regained large swaths of rudimentary sight after undergoing visual training designed by researchers at the University of Rochester Medical Center's Flaum Eye Institute.

Vision test gives insight into the effect of prenatal exposure to recreational drugs

November 19, 2015
Children exposed to marijuana in the womb show a significant improvement in their ability to track moving objects at age four, according to new vision research. But researchers are warning that the results do not mean marijuana ...

How the brain finds what it's looking for

September 4, 2014
Despite the barrage of visual information the brain receives, it retains a remarkable ability to focus on important and relevant items. This fall, for example, NFL quarterbacks will be rewarded handsomely for how well they ...

The brain perceives motion the same way through both vision and touch

September 29, 2015
The brain uses similar computations to calculate the direction and speed of objects in motion whether they are perceived visually or through the sense of touch. The notion that the brain uses shared calculations to interpret ...

Neural activity in the brain is harder to disrupt when we are aware of it

October 22, 2013
We consciously perceive just a small part of the information processed in the brain – but which information in the brain remains unconscious and which reaches our consciousness remains a mystery. However, neuroscientists ...

Recommended for you

New study finds 'timing cells' in the brain may underlie an animal's inner clock

October 23, 2018
Are you taking your time when feeding your pet? Fluffy and Fido are on to you—and they can tell when you are dawdling.

Neurons reliably respond to straight lines

October 23, 2018
Single neurons in the brain's primary visual cortex can reliably detect straight lines, even though the cellular makeup of the neurons is constantly changing, according to a new study by Carnegie Mellon University neuroscientists, ...

Scientists reveal new details of how a naturally occurring hormone can boost memory in aging mice

October 23, 2018
A Columbia study in mice has revealed new details of how a naturally occurring bone hormone reverses memory loss in the aging brain. These findings about the hormone, called osteocalcin, stand to spur further investigations ...

Mutation in common protein triggers tangles, chaos inside brain cells

October 23, 2018
A pioneer in the study of neural cells revealed today (Oct. 23, 2018) how a single mutation affecting the most common protein in a supporting brain cell produces devastating, fibrous globs. These, in turn, disturb the location ...

Nerve-on-a-chip platform makes neuroprosthetics more effective

October 23, 2018
EPFL scientists have developed a miniaturized electronic platform for the stimulation and recording of peripheral nerve fibers on a chip. By modulating and rapidly recording nerve activity with a high signal-to-noise ratio, ...

The smell of lavender is relaxing, science confirms

October 23, 2018
Lavender works its relaxing magic all around us: from garden borders to bath bombs to fabric softener. But why not in our hospitals and clinics? And what is the science behind the magic?

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.