A heart attack in a petri dish

July 17, 2017 by Http://news.njit.edu/sites/news/files/styles/690Wideimage/public/lee%20Microscope%20Edited.jpg?itok=2Vj6Tlng
Credit: New Jersey Institute of Technology

In petri dishes in her campus laboratory at New Jersey Institute of Technology, Alice Lee is developing colonies of cardiac cells, formed into chambers, that pump and contract like a human heart. Derived from stem cells, these primitive organs will help her achieve a research milestone: to observe in microscopic, real-time detail how the heart repairs itself after injury.

She must first induce an "attack" by damaging the tiny proto-hearts with a frozen rod, thus mobilizing sequential, cell-based repair crews that clear the injury site of debris, and then in a second phase, recruit materials and tools from the neighboring to mend the damage.

"By developing diseased-tissue models, we're hoping to gain insights that will allow us to improve diagnoses and therapies for cardiac diseases," says Lee, an assistant professor of biomedical engineering. "These are techniques that cannot be tested in patients."

Earlier this year, she received a five-year Faculty Early Career Development (CAREER) Award from the National Science Foundation (NSF) to advance understanding of the underlying mechanisms of tissue repair by cell-based therapy. NSF CAREER awards, described by the agency as among its most prestigious, are highly selective grants that support early-career researchers with "the potential to serve as academic role models in research and education and to lead advances in the mission of their department or organization."

In awarding her the grant, the NSF acknowledged "major hurdles" to date in developing cell-based therapies - restoring damaged tissue by deploying transplanted stem to the injury site—that derive in part from limited knowledge of the biological mechanisms of the . Existing models have focused almost exclusively on mimicking the healthy cardiac microenvironment with the goal of providing a living surgical replacement. In order to develop alternative therapies, the agency deems her model both novel and necessary.

"What is unique about these experiments is the opportunity they provide to see how different cell types in the heart interact during the repair process in the immediate aftermath of a heart attack—the period that offers the best chance for successful cell-therapy interventions," Lee notes. "Better understanding of diseased tissue can help us to predict how stem cells used in cell-based therapy will integrate and function in the body."

Medical researchers have had little success with these therapies so far, because the injected cells drift away from the injury and fail in their task to rebuild tissue. "They don't stick to the site, and eventually they die," Lee says.

Unlike most biological tissues, do not regenerate or proliferate. Following injury, the damaged tissue is not so much restored as slightly reconfigured. It becomes stiffer and less functional.

Lee is focusing on the first two stages of repair: an initial phase of about seven days during which the body sends out macrophages, that clear the site by engulfing and consuming the destroyed tissue, followed by a weeks-long proliferation phase, in which cardiac fibroblast cells, connective cells, become activated and migrate to the region of dead tissue to synthesize new extracellular matrix - the structural molecules that support heart cells—and remodel the tissue.

"We're trying to figure out what biological mechanisms will guide the stem cells used in therapy to the right place and foster their growth there," Lee explains. She and Pamela Hitscherich, a Ph.D. student in her laboratory, are testing various scenarios in which the heart cells - cardiomyocytes—interact in different sequences with the inflammatory repair cells.

A crucial element of this process is ensuring there are enough blood vessels to supply the tissue with the nutrients and energy it needs to grow.

"In order to build what's physiologically correct, we must incorporate vasculature, a functioning network of vessels to feed the new organ cells and permit their growth, and we are still searching for the best strategy to create this tissue," she says. "It's difficult to do outside of the body without proper blood flow and signals from other cells and tissues." She is currently investigating the role of tissue-specific vascular cells and improving a device she created to host vessel-formation experiments.

Lee says it has been difficult to fully understand the healing process because of the body's complexity.

"In the case of a heart attack, a series of events, including inflammation, proliferation and remodeling, occur at the damaged heart region," she explains. "That's why the in vitro model is critical. It's a simplified set-up that allows us to study different parameters independently and tease out the problem."

"We want to know, for example, what components in heart tissue prompt the stem cells to adhere and when is the best time to inject them," she adds. "We can also develop newer therapeutic interventions to help these home in and ultimately restore the heart function."

Explore further: Cardiac stem cells from heart disease patients may be harmful

Related Stories

Cardiac stem cells from heart disease patients may be harmful

June 15, 2017
Patients with severe and end-stage heart failure have few treatment options available to them apart from transplants and "miraculous" stem cell therapy. But a new Tel Aviv University study finds that stem cell therapy may, ...

Scientists create 'beating' human heart muscle for cardiac research

March 17, 2017
Scientists at The University of Queensland have taken a significant step forward in cardiac disease research by creating a functional 'beating' human heart muscle from stem cells.

A tool for isolating progenitor cells from human heart tissue could lead to heart repair

October 7, 2015
A*STAR researchers and colleagues have developed a method to isolate and expand human heart stem cells, also known as cardiac progenitor cells, which could have great potential for repairing injured heart tissue.

Adult stem cell types' heart repair potential probed

November 25, 2016
New University of Otago research is providing fresh insights into how a patient's adult stem cells could best be used to regenerate their diseased hearts.

Muscles on-a-chip provide insight into cardiac stem cell therapies

February 8, 2016
Stem cell-derived heart muscle cells may fail to effectively replace damaged cardiac tissue because they don't contract strongly enough, according to a study in The Journal of Cell Biology. The study, "Coupling Primary and ...

Sub-set of stem cells found to minimize risks when used to treat damaged hearts

July 25, 2016
Scientists use mathematical modeling to simulate human mesenchymal stem cell delivery to a damaged heart and found that using one sub-set of these stem cells minimises the risks associated with this therapy. The study, published ...

Recommended for you

Some cancer therapies may provide a new way to treat high blood pressure

November 20, 2017
Drugs designed to halt cancer growth may offer a new way to control high blood pressure (hypertension), say Georgetown University Medical Center investigators. The finding could offer a real advance in hypertension treatment ...

Could this protein protect people against coronary artery disease?

November 17, 2017
The buildup of plaque in the heart's arteries is an unfortunate part of aging. But by studying the genetic makeup of people who maintain clear arteries into old age, researchers led by UNC's Jonathan Schisler, PhD, have identified ...

Raising 'good' cholesterol fails to protect against heart disease

November 16, 2017
Raising so-called 'good' cholesterol by blocking a key protein involved in its metabolism does not protect against heart disease or stroke, according to a large genetic study of 150,000 Chinese adults published in the journal ...

Popular e-cigarette liquid flavorings may change, damage heart muscle cells

November 16, 2017
Chemicals used to make some popular e-cigarette liquid flavorings—including cinnamon, clove, citrus and floral—may cause changes or damage to heart muscle cells, new research indicates.

Possible use for botulinum toxin to treat atrial fibrillation

November 16, 2017
From temporarily softening wrinkles to easing migraines, botulinum toxin has become a versatile medical remedy because of its ability to block nerve signals that can become bothersome or risky.

New model estimates odds of events that trigger sudden cardiac death

November 16, 2017
A new computational model of heart tissue allows researchers to estimate the probability of rare heartbeat irregularities that can cause sudden cardiac death. The model, developed by Mark Walker and colleagues from Johns ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.