New method shortcut in drug development

July 11, 2017, Uppsala University
Credit: Susan Buck Ms/Public Domain

In the latest issue of the journal Proceedings of the National Academy of Sciences (PNAS), a research group at Uppsala University presents a new, small-scale method that may become a smart shortcut for determining the bioavailability of a pharmaceutical drug within cells.

"Finding out how a therapeutic affects the body means having to consider many different factors that can influence the cells' internal environment. Our may be a way of substantially facilitating this stage," says Professor Per Artursson.

The researcher led the joint study underway with colleagues at the Chemical Biology platform in SciLifeLab (created jointly by Uppsala and Stockholm Universities, Karolinska Institute and KTH Royal Institute of Technology) and GlaxoSmithKline in Stevenage, UK.

The majority of promising new drug candidates are effective only within the cells, but quick general methods of determining intracellular drug quantities are lacking. A team of researchers headed by the Drug Delivery Group at Uppsala University may now be on the track of a solution through a fast, small-scale method of determining a drug's bioavailability (the fraction available to work in biological processes) inside cultured cells. By measuring the unbound quantity of the drug in the cells, the method accounts for the drug partly "disappearing" when it binds to cell components where it cannot exert its intended effect. This "disappearing" proportion of the drug varies from one molecule to another and has hitherto been hard to predict, but can now be easily determined with the researchers' small-scale method.

The research group has also demonstrated that, measured with the new method, bioavailability can be used to predict the effects of the drug molecules in more advanced cell models for specific therapeutic areas such as cancer, inflammation and dementia disorders.

"It takes time to develop models for specific therapeutic areas, so our method may be especially useful in early stages of drug development. Major pharmaceutical drug companies have already shown great interest and the method is now being offered on the SciLifeLab Drug Discovery and Development platform," Artursson says.

The scientists are currently investigating whether the method can predict effects of drugs in the body, as well. This is more complicated than a cell culture. Since taking blood samples is simple while sampling tissue is considerably more difficult, bioavailability is often predicted on the basis of drug concentrations in the blood – a fairly blunt instrument.

The proportion of a drug entering the target cell may be either higher or lower than in the blood. The drug may, for example, bind to the cell's fat molecules, break down, or be transported out of the cell. These mechanisms reduce the available fraction of the drug inside the cell, i.e. its intracellular bioavailability. Retrospective correction factors must therefore often be introduced to allow for these mechanisms in the use of "pharmacokinetic models" to study a drug's route of administration into the body.

"Our preliminary studies show that replacing the correction factors with a simple determination of local bioavailability in the seems to be possible. But more experiments are required before we know how applicable our principle is at tissue and organism level. Clearly, intracellular is on the way to becoming an important early instrument in research," Artursson says.

"Prediction of intracellular exposure bridges the gap between target- and cell-based drug discovery," PNAS (Proceedings of the National Academy of Sciences, will be published online this week, 10-14 July 2017.

Explore further: Improved accuracy for cancer drug testing

More information: Mateus et al; Prediction of intracellular exposure bridges the gap between target- and cell-based drug discovery, PNAS www.pnas.org/cgi/doi/10.1073/pnas.1701848114

Related Stories

Improved accuracy for cancer drug testing

June 14, 2017
A method to more accurately test anti-cancer drugs has now been developed at the Sahlgrenska Academy, University of Gothenburg. The method paves the way to much earlier assessment of who benefits from a specific drug and ...

FDA approves first new drug in 20 years for sickle cell

July 7, 2017
The U.S. Food and Drug Administration has approved the first drug in nearly 20 years for sickle cell, an inherited disease in which abnormally shaped red blood cells can't properly carry oxygen throughout the body, which ...

New model can predict drug interactions and side effects even between a large number of components

April 10, 2017
Drug cocktails such as those for treating cancer, like the alcoholic versions offered at the local bar, are best when the proper ingredients are mixed in the right proportions. And like the cocktails we normally drink, the ...

Recommended for you

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.