Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017, Vanderbilt University
This microscopy photo demonstrates penetration of a fluorescent-labeled siRNA-L2 vs. synthetic nanoparticles into a three-dimensional tumor sample. Credit: Vanderbilt University

Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Their research gives oncologists a better shot at overcoming the problems of drug resistance, toxicity to patients and a host of other barriers to consistently achieving successful gene therapy for cancer. It is particularly promising for patients with , an aggressive type that makes up about 15-20 percent of cases.

Craig Duvall, associate professor of biomedical engineering, put the effectiveness of a specialized ribonucleic acid hitchhiking on the human protein up against jetPEI nanoparticles, the mostly widely used synthetic carrier for the task of tumor gene silencing.

His findings, reached with Samantha Sarett, a recent Ph.D. graduate, are published today in the Proceedings of the National Academy of Sciences.

Ribonucleic acids can control the behavior of cancer cells, but they require a carrier to get them to the target. Duvall's team made a simple modification to a small-interfering ribonucleic acid molecule, called siRNA-L2, allowing it to rapidly load into an albumin pocket typically reserved to ferry fatty acids around the body.

They found that the siRNA-L2, using albumin as its carrier, has no apparent dose-limiting toxicity, a significant problem for synthetic nanoparticles. That means a higher dose of the anti-cancer drug can be delivered to the tumor without potentially harming the patient.

"We used albumin because it's the highest-concentrated protein in your blood," Duvall said. "Our molecule, siRNA-L2, binds into the fatty pocket of albumin. If we put siRNA directly into the body without a carrier, it's cleared out by the kidneys in two minutes. If we load siRNA into synthetic nanoparticles to avoid that, then they're filtered out by the liver. Albumin circulates in the body for days, making the siRNA-L2 more available for delivery into tumors."

Because cancer cells show higher metabolic activity, the albumin that's carrying siRNA-L2 travels to tumors and gets to work quickly. The molecule's smaller size allows it to penetrate tumors at a higher rate - with 100 percent of tumor cells testing positive for siRNA-L2 as opposed to only 60 percent when the molecule was carried by jetPEI. Once there, Duvall's molecule silences a gene crucial to the tumor's growth and survival.

He said he used the synthetic carrier as a comparison because polymer-based jetPEI represents the gold standard available.

To make sure their results were translatable to human therapy, the team - in collaboration with Vanderbilt University Medical Center biologist Dana Brantley-Sieders—tested siRNA-L2 in human breast tumor tissue removed from the donor. The Vanderbilt molecule remained more effective, with siRNA-L2 more than three times as present in the tumor than siRNA delivered with synthetic nanoparticles.

Brantley-Sieders said their research has the potential of overcoming the biggest barriers to clinical application of gene-silencing .

"What fascinates and excites me most about this approach, in addition to improved tumor penetration, is lack of toxicity at a relatively high dose," she said. "We could potentially use our siRNA delivery system to target several genes simultaneously or sequentially. Most cancers are driven by multiple abnormal genes, so targeting one often leads to activation of others as the adapts."

Explore further: Precise and persistent cell sabotage: Control of siRNA could aid regenerative medicine, cancer therapy

More information: Samantha M. Sarett el al., "Lipophilic siRNA targets albumin in situ and promotes bioavailability, tumor penetration, and carrier-free gene silencing," PNAS (2017). www.pnas.org/cgi/doi/10.1073/pnas.1621240114

Related Stories

Precise and persistent cell sabotage: Control of siRNA could aid regenerative medicine, cancer therapy

August 27, 2012
Some of the body's own genetic material, known as small interfering RNA (siRNA), can be packaged then unleashed as a precise and persistent technology to guide cell behavior, researchers at Case Western Reserve University ...

Iron key to brain tumor drug delivery

June 2, 2011
Brain cancer therapy may be more effective if the expression of an iron-storing protein is decreased to enhance the action of therapeutic drugs on brain cancer cells, according to Penn State College of Medicine researchers.

Recommended for you

Gene plays critical role in noise-induced deafness

October 19, 2018
In experiments using mice, a team of UC San Francisco researchers has discovered a gene that plays an essential role in noise-induced deafness. Remarkably, by administering an experimental chemical—identified in a separate ...

Functional engineered oesophagus could pave way for clinical trials 

October 18, 2018
The world's first functional oesophagus engineered from stem cells has been grown and successfully transplanted into mice, as part of a pioneering new study led by UCL.

New findings cast light on lymphatic system, key player in human health

October 16, 2018
Scientists at the Oklahoma Medical Research Foundation have broken new ground in understanding how the lymphatic system works, potentially opening the door for future therapies.

New model suggests cuffless, non-invasive blood pressure monitoring possible using pulse waves

October 16, 2018
A large team of researchers from several institutions in China and the U.S. has developed a model that suggests it should be possible to create a cuffless, non-invasive blood pressure monitor based on measuring pulse waves. ...

Age-related increase in estrogen may cause common men's hernia

October 16, 2018
An age-related increase in estrogen may be the culprit behind inguinal hernias, a condition common among elderly men that often requires corrective surgery, according to a Northwestern Medicine study was published Oct. 15 ...

Income and wealth affect the mental health of Australians, study shows

October 16, 2018
Australians who have higher incomes and greater wealth are more likely to experience better mental health throughout their lives, new research led by the Bankwest Curtin Economics Centre has found.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.