Researchers revolutionizing control of vector-borne diseases

July 7, 2017 by Grace Winn
Anopheles gambiae mosquito, feeding on blood. Credit: James Gathany, Centers for Disease Control and Prevention

Purdue University entomology professor Catherine Hill is researching a way to respond to new and reemerging vector borne diseases, specifically without wiping out the mosquito population.

Arthropod vectors include insects such as , sandflies, blackflies and ticks. These insects transmit diseases through biting a host; and many of these diseases are on the rise due to growth, climate change, and habitat destruction, Hill says.

Increased human population leads to large groups of people relocating to find more resources. These people bring diseases to which the people in new regions are not immune. Local mosquitoes that feed on infected people are then able to spread diseases to others.

Higher global temperatures mean that insects can survive in different geographical regions that were previously off limits for their biology. According to Climate Nexus, an environmental advocacy agency, mosquitoes can move farther away from the equator, as well as survive in higher altitudes.

Deforestation also plays a role in the movement of by changing the dynamics of an ecosystem; this eliminates mosquito habitat and the natural vertebrate hosts used by mosquitoes. These changes then reshape existing ecosystem boundaries, which are typically sites of contact between humans and infected vectors. Therefore, humans living near fragmented forests have a higher risk of being infected and then spreading this infection says Hill.

Hill's team is looking to develop new control technologies to combat the growing problem of these diseases, with research specific to the viruses that cause West Nile, dengue, Zika and yellow fever. These viruses are from a class of viruses called flaviviruses. She wants to develop non-toxic, non-lethal pesticides that will suppress pathogen transmission of these diseases.

"The global societal goal that we're trying to address is to control infectious diseases transmitted by mosquitoes in a way that's safe for humans and the environment and that also preserves biodiversity, so without killing the insect…that's a bit of a radical idea," Hill says.

Within five to 10 years, Hill wants to partner with a company to develop an insecticide. Specifically, she is looking for a chemical compound that will make it impossible for a mosquito to transmit diseases. Mosquitoes are showing high levels of resistance to traditional insecticides, and with diseases on the rise, something needs to be done to control these insects.

"You can see we're kind of on this collision course, this perfect storm, and it's essential that we develop an arsenal of new weapons to control mosquitoes within the next 5-10 years," she says.

Hill's desire to avoid eradicating mosquitoes makes her research groundbreaking. Up until this point, the main approach is to use insecticides that are rapidly toxic and quickly cause the death or paralysis of the insect. Hill points out that this can have devastating effects on many other insect populations, as well as being dangerous to humans.

Therefore, Hill and her team look for changes in mosquito behavior, biology or morphology rather than the death of the insect when screening chemicals that could be used for an insecticide. Hill and her team "recognize mosquitoes are playing a fundamental ecological role and we don't want to disrupt that delicate web," she says

While finding novel and non-toxic chemistries to control mosquitoes is vital to Hill's research, political scientists, communications specialists and environmental health experts play pivotal roles in changing the way the public views mosquitoes.

"There could be a lot of skepticism from the public, and [not killing mosquitoes] could be a tough thing to accept," she says. Therefore, Hill's team is composed of many different scientists with expertise in different areas to not only create a chemical but also to address social concerns and change public policy regarding mosquito and control.

For instance, Hill's team includes political scientist Leigh Raymond, medicinal chemists and molecular pharmacologists Val Watts and Daniel Flaherty, entomologist Michael Scharf and communication specialist Linda Pfeiffer.

The team is based in Discovery Park, a research park dedicated to using interdisciplinary teams to solve global problems. Hill's research was one of the winners of Discovery Park's Big Idea Challenge, a program that provides resources to interdisciplinary teams with innovative research.

Hill is eager to produce these new chemicals and get them on the market, but her team will take whatever time needed in order to extensively research a product and ensure that there is enough data to show effective disease control, human safety and low environmental impact.

"I don't want this to languish in the lab. Everything we do in the lab is about application. The mindset has always been to move it out of the lab as quickly as possible, so it's a rapid trajectory," she says.

Explore further: Scientists reveal mechanism behind mosquito-borne-disease 'blocker' used to fight viruses

Related Stories

Scientists reveal mechanism behind mosquito-borne-disease 'blocker' used to fight viruses

June 15, 2017
A new study from Indiana University may explain how a bacterium called Wolbachia prevents mosquitoes from transmitting deadly diseases such as dengue fever, West Nile virus and Zika.

Mosquitoes infected with virus-suppressing bacteria could help control dengue fever

May 30, 2017
Mosquitos infected with the bacteria Wolbachia are significantly worse vectors for dengue virus, but how to establish and spread Wolbachia in an urban mosquito population is unclear. A study publishing on 30th May 2017 in ...

Controlling and avoiding mosquitoes helps minimize risk of Zika

February 2, 2016
Taking steps to control mosquitoes and prevent bites can go a long way to protecting public health and curbing transmission of the Zika virus, says Purdue medical entomologist Catherine Hill.

Hormone-disrupting compound could provide new approach to malaria control

December 15, 2016
A chemical that disrupts biological processes in female mosquitoes may be just as effective as insecticides in reducing the spread of malaria, according to a new study from Harvard T.H. Chan School of Public Health.

Recommended for you

Gastric acid suppressant lansoprazole may target tuberculosis

November 21, 2017
A cheap and widely used drug, used to treat conditions such as heartburn, gastritis and ulcers, could work against the bacteria that cause tuberculosis (TB), according to new research from UCL and the London School of Hygiene ...

Improving prediction accuracy of Crohn's disease based on repeated fecal sampling

November 21, 2017
Researchers at the University of California San Diego Center for Microbiome Innovation (CMI) have found that sampling the gut microbiome over time can provide insights that are not available with a single time point. The ...

Anti-malaria drug shows promise as Zika virus treatment

November 17, 2017
A new collaborative study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) and UC San Diego School of Medicine has found that a medication used to prevent and treat malaria may also be effective ...

Decrease in sunshine, increase in Rickets

November 17, 2017
A University of Toronto student and professor have teamed up to discover that Britain's increasing cloudiness during the summer could be an important reason for the mysterious increase in Rickets among British children over ...

Scientists identify biomarkers that indicate likelihood of survival in infected patients

November 17, 2017
Scientists have identified a set of biomarkers that indicate which patients infected with the Ebola virus are most at risk of dying from the disease.

Research team unlocks secrets of Ebola

November 16, 2017
In a comprehensive and complex molecular study of blood samples from Ebola patients in Sierra Leone, published today (Nov. 16, 2017) in Cell Host and Microbe, a scientific team led by the University of Wisconsin-Madison has ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.