Scientists find rare disease clues in cell's recycling system

July 17, 2017
The compound methyl-β-cyclodextrin turns on an enzyme, AMPK, triggering a response against a rare genetic disease, NPC1. Credit: NCATS

Scientists have demonstrated how an investigational drug works against a rare, fatal genetic disease, Niemann-Pick type C1 (NPC1). They found that a closely related compound will activate an enzyme, AMPK, triggering a cellular "recycling" system that helps reduce elevated cholesterol and other accumulated fats in the brains and livers of NPC1 patients, which are hallmarks associated with severe neurological problems. The research was led by scientists at the National Center for Advancing Translational Sciences (NCATS), part of the National Institutes of Health, and their colleagues.

The work could lead to a new generation of potential therapies for NPC1 and other similar disorders, as well as such as Parkinson's and Alzheimer's diseases. The scientists reported their findings online on July 17, 2017 in the journal Autophagy.

"We've shown that a compound very similar to the repurposed currently in clinical testing in patients actually turns on an enzyme that jumpstarts the cell's waste disposal system to reduce in cells," said co-corresponding author Wei Zheng, Ph.D., scientist, NCATS Therapeutics for Rare and Neglected Diseases program, Division of Pre-Clinical Innovation. "This process, called autophagy, is what cells use to recycle their trash. The process malfunctions in NPC1 and a number of neurodegenerative diseases, making the AMPK enzyme a potential target for future drugs."

NPC1 occurs when a faulty gene fails to remove cholesterol and other lipids from cells. The lipids accumulate in the spleen, liver and brain, impairing movement and leading to slurred speech, seizures and dementia. Patients with NPC1 typically die in their teens, though a late-onset form of the disease affects young adults.

An , called 2-hydroxypropyl-β-cyclodextrin, is being tested in a Phase 3 clinical trial in patients with NPC1. Pre-clinical studies, including those at NCATS, and previous testing in patients showed the potential drug reduced cholesterol and other lipids in patient cells, delaying disease onset and lessening some disease symptoms. But investigators were unsure of how the drug worked.

To find out, Zheng and co-corresponding authors Juan Marugan, Ph.D., at NCATS and Daniel Ory, M.D., at Washington University School of Medicine in St. Louis, and their co-workers turned to a similar, more potent compound named methyl-β-cyclodextrin.

In several pre-clinical experiments using cells from NPC1 patients, the researchers determined that the compound could bind to AMPK, turning on its activity and the , resulting in a drop in accumulated cholesterol in NPC1 cells. When they blocked AMPK activity, preventing methyl-β-cyclodextrin from turning on the enzyme, there was no reduction in cholesterol in NPC1 cells. In addition, the researchers found that other compounds that also turned on AMPK had similar effects in reducing cholesterol in NPC1 cells, suggesting that AMPK is a potential target for the design of new drugs to treat NPC1 patients.

"Our findings provide important new insights into the mechanism of action by which cyclodextrin reduces cholesterol buildup in NPC1 and eventually restores a balance," said Marugan, who is acting branch chief of the NCATS Chemical Genomics Center.

"This work is a great illustration of the bi-directional nature of translation - certainly basic science insights can lead to new interventions, but the reverse is equally true," said NCATS Director Christopher P. Austin, M.D., who is also a publication co-author. "Rather than building on the basic science studies to develop a therapy, in this case, we're taking an experimental drug in clinical testing and picking apart how it works."

NPC1 is a lysosomal storage disease, characterized by too much cholesterol and other lipids in the cell's lysosomes, which are sacs of enzymes that break apart proteins, fats and other materials for recycling. In the , a gene mutation blocks the transport of fats like cholesterol out of the lysosome, causing them to pile up. In many such diseases, there's also a breakdown in the recycling process, likely due to the cholesterol buildup.

"Malfunctions in the autophagy process have been reported in other lysosomal storage diseases, in addition to diseases such as Parkinson's and Alzheimer's diseases," Zheng said. "Understanding how the drug works may enable us to develop a new generation of anti-NPC1 drugs, and perhaps new drugs against other lysosomal storage and neurodegenerative diseases."

While the current study showed how methyl-β-cyclodextrin can work in NPC1, more research remains to show if the investigational drug, 2-hydroxypropyl-β-cyclodextrin, works in a comparable way, he noted. 

Explore further: Restarting stalled autophagy a potential approach to treating Niemann-Pick disease

Related Stories

Restarting stalled autophagy a potential approach to treating Niemann-Pick disease

January 9, 2014
(Medical Xpress)—Whitehead Institute researchers have determined that the lipid storage disorder Niemann-Pick type C1 (NPC1) disease is caused not only by defects in cholesterol processing but also in autophagy—a key ...

Gene therapy shows promise for treating Niemann-Pick disease type C1

October 26, 2016
For the first time, National Institutes of Health (NIH) researchers have demonstrated in mice that gene therapy may be the best method for correcting the single faulty gene that causes Niemann-Pick disease, type C1 (NPC1). ...

Combination therapy a potential strategy for treating Niemann Pick disease

May 15, 2014
By studying nerve and liver cells grown from patient-derived induced pluripotent stem cells (iPSCs), Whitehead Institute researchers have identified a potential dual-pronged approach to treating Niemann-Pick type C (NPC) ...

New research clarifies how cells take in cholesterol and offers insight on Ebola

September 27, 2016
Cholesterol—that waxy substance incriminated in heart attack and stroke—is a precious commodity for cells. In fact, errors in a cell's ability to import these rod-like molecules can be fatal.

Study identifies Ebola virus's Achilles' heel

May 26, 2015
An international team including scientists from Albert Einstein College of Medicine of Yeshiva University and the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID) has identified the molecular "lock" ...

Researchers find 'key' used by ebola virus to unlock cells and spread deadly infection

August 24, 2011
Researchers at Albert Einstein College of Medicine of Yeshiva University have helped identify a cellular protein that is critical for infection by the deadly Ebola virus. The findings, published in today's online edition ...

Recommended for you

Researchers discover key signaling protein for muscle growth

November 20, 2017
Researchers at the University of Louisville have discovered the importance of a well-known protein, myeloid differentiation primary response gene 88 (MyD88), in the development and regeneration of muscles. Ashok Kumar, Ph.D., ...

New breast cell types discovered by multidisciplinary research team

November 20, 2017
A joint effort by breast cancer researchers and bioinformaticians has provided new insights into the molecular changes that drive breast development.

Brain cell advance brings hope for Creutzfeldt-Jakob disease

November 20, 2017
Scientists have developed a new system to study Creutzfeldt-Jakob disease in the laboratory, paving the way for research to find treatments for the fatal brain disorder.

Hibernating ground squirrels provide clues to new stroke treatments

November 17, 2017
In the fight against brain damage caused by stroke, researchers have turned to an unlikely source of inspiration: hibernating ground squirrels.

Molecular guardian defends cells, organs against excess cholesterol

November 16, 2017
A team of researchers at the Harvard T. H. Chan School of Public Health has illuminated a critical player in cholesterol metabolism that acts as a molecular guardian in cells to help maintain cholesterol levels within a safe, ...

Prototype ear plug sensor could improve monitoring of vital signs

November 16, 2017
Scientists have developed a sensor that fits in the ear, with the aim of monitoring the heart, brain and lungs functions for health and fitness.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.