Mapping the brain, neuron by neuron

August 10, 2017
Electron microscopic reconstruction of individual brain nerve cells (fly larvae brain, Drosophila melanogaster) Credit: University of Konstanz

A Johns Hopkins University mathematician and computer scientist joined an international team of neuroscientists to create a complete map of the learning and memory center of the fruit fly larva brain, an early step toward mapping how all animal brains work.

In a paper in the current issue of the journal Nature, the team reported on drawing up the map, known as a "connectome."

The project could serve as a guide as scientists work their way up the animal kingdom and eventually chart connections among neurons in the brains of mammals. The part of the fruit fly larva used in the study corresponds roughly to the cerebral cortex in mammals.

"Nobody's ever done a complete connectome" before, other than for a roundworm brain with roughly 300 neurons, said Carey E. Priebe, a professor of applied mathematics and statistics in Johns Hopkins' Whiting School of Engineering.

The portion of the fruit fly larva brain mapped in this project includes roughly 1,600 of the 10,000 neurons contained in a larva's entire brain. The adult fruit fly brain comprises roughly 100,000 neurons, and the leap in complexity to mammals is far greater still. At the top of the chain, the contains 86 billion to 100 billion neurons.

For the newly published research, Priebe and Youngser Park, a computer scientist in the Whiting School's Center for Imaging Science, did a statistical analysis of connections among neurons that neuroscientists using electron microscopy had found in the fruit fly larva brain. Priebe and Park were part of a group of 17 scientists from eight research institutions in the United States, the United Kingdom and Germany who took part in this work.

The Priebe and Park analysis reveals patterns of connections among the six types of neurons that had previously been misunderstood or were entirely unknown, contributing to a better understanding of how this portion of the fruit fly larva brain works. The challenge is roughly analogous to sorting out the relationships of all the parts of a complex electrical grid.

The new research focused strictly on the structural connections, leaving aside functional questions of how the connections are associated with particular behaviors. Those questions were taken up in research that Priebe and Park also worked on that was published three years ago in the journal Science. In that case, scientists identified 29 separate fruit fly larva behaviors, including crawling forward and backward, rolling, hunching up, and turning away from specific odors. The two Johns Hopkins researchers then mapped the that trigger those actions.

A few months after that work was published in 2014, Priebe was awarded a two-year $300,000 grant from the National Science Foundation to continue the work on brain circuitry along with neuroscientists from the Howard Hughes Medical Institute's Janelia Research Campus in Virginia. Nine Janelia scientists worked on the new research published in Nature.

The NSF program supports the $100 million BRAIN Initiative launched by then-President Barack Obama in 2013. The effort marshals the work of several agencies to speed the development of new technologies in neuroscience to help researchers understand how the brain works.

While Priebe does not expect to see a complete synapse-level structural connectome for the human brain completed in his lifetime, he said the new work moves the effort a bit further along.

"It is a step," Priebe said. "It's an early step, but it's a step."

Explore further: Illuminating neural pathways in the living brain

More information: Katharina Eichler et al, The complete connectome of a learning and memory centre in an insect brain, Nature (2017). DOI: 10.1038/nature23455

Related Stories

Illuminating neural pathways in the living brain

July 24, 2017
Using light alone, scientists from the Max Planck Institute of Neurobiology in Martinsried are now able to reveal pairs or chains of functionally connected neurons under the microscope. The new optogenetic method, named Optobow, ...

Researchers develop a new algorithm for analysing brain image data

March 8, 2017
Precise knowledge of the connections in the brain – the links between all the nerve cells – is a prerequisite for better understanding this most complex of organs. Researchers from Heidelberg University have now developed ...

Brain plasticity: How adult-born neurons get wired-in

February 2, 2017
One goal in neurobiology is to understand how the flow of electrical signals through brain circuits gives rise to perception, action, thought, learning and memories.

Researchers map neural circuit involved in combining multiple senses

April 30, 2015
Combining information across multiple senses helps in choosing an appropriate action. While many examples exist of such synergistic effects, very few studies have identified the neural architecture underlying multisensory ...

Approach or buzz off: Brain cells in fruit fly hold secret to individual odor preferences

October 6, 2015
Responding appropriately to the smell of food or the scent of danger can mean life or death to a fruit fly, and dedicated circuits in the insect's brain are in place to make sure the fly gets it right.

Recommended for you

Researchers discover fundamental pathology behind ALS

August 16, 2017
A team led by scientists at St. Jude Children's Research Hospital and Mayo Clinic has identified a basic biological mechanism that kills neurons in amyotrophic lateral sclerosis (ALS) and in a related genetic disorder, frontotemporal ...

Scientists use magnetic fields to remotely stimulate brain—and control body movements

August 16, 2017
Scientists have used magnetism to activate tiny groups of cells in the brain, inducing bodily movements that include running, rotating and losing control of the extremities—an achievement that could lead to advances in ...

The nerve-guiding 'labels' that may one day help re-establish broken nervous connections

August 16, 2017
Scientists have identified a large group of biological 'labels' that guide nerves to ensure they make the correct connections and control different parts of the body. Although their research was conducted with fruit flies, ...

Scientists give star treatment to lesser-known cells crucial for brain development

August 16, 2017
After decades of relative neglect, star-shaped brain cells called astrocytes are finally getting their due. To gather insight into a critical aspect of brain development, a team of scientists examined the maturation of astrocytes ...

Navigation and spatial memory—new brain region identified to be involved

August 16, 2017
Navigation in mammals including humans and rodents depends on specialized neural networks that encode the animal's location and trajectory in the environment, serving essentially as a GPS, findings that led to the 2014 Nobel ...

Prematurity leaves distinctive molecular signature in infants' cerebellum

August 15, 2017
Premature birth, which affects one in 10 U.S. babies, is associated with altered metabolite profiles in the infants' cerebellum, the part of the brain that controls coordination and balance, a team led by Children's National ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.