First-ever look at potentially deadly metabolic disorder that strikes infants

August 31, 2017, KTH Royal Institute of Technology
A 3-D view of dolichylphosphomannose. Credit: DPMS

You may have never heard of congenital disorder of glycosylation, but parents whose children are born with forms of this rare – and underreported – metabolic disorder know all too well the dangers they pose, including developmental delay, failure to thrive, stroke-like symptoms, seizures and cerebellar dysfunction.

Often serious, and sometimes fatal, CDG diseases are hereditary disorders that affect a complex metabolic process, known as glycosylation, which is critical for the development of organs. Reporting in the journal Nature Communications, researchers from KTH Royal Institute of Technology in Stockholm have demonstrated for the first time the way in which certain types of CDG diseases arise from the shortage of a fundamental building block for proteins, the enzyme dolichylphosphomannose, which is known as DPMS.

Glycosylation produces sugar chains that are attached to the surface of proteins. The majority of proteins produced in the human body, about two thirds, undergo the maturation process to become glycoproteins. A glycoprotein obtains its final shape and function once the are in place.

Although there is yet no cure for CDG, the researchers in Sweden have given us an unprecedented look at the inner workings of DPMS. KTH Biotechnology Professor Christina Divne says the team hope that their work will lead to improved chances of predicting and treating CDG.

The article in Nature Communication details how the team determined the three-dimensional atomic structure of DPMS, using a technically-advanced and time-consuming method.

"From the very 3-D image of the enzyme's appearance, we have managed to determine how it functions; and by that explain why disease-causing variants of DPMS lack the ability to produce the necessary building block, and therefore cause disease," Divne says.

The study also sheds new light on how aberrant DPMS causes severe psychomotor developmental delays, microcephaly, epileptic seizures, and sometimes body malformations. A connection has also been found to certain forms of cancer.

First identified in 1980, CDG cases have been documented in limited numbers. Divne says that many cases are likely unrecorded since a correct diagnosis requires that the sequences for known disease genes be determined – a step that is not regularly performed. Diagnosis also requires knowledge of relevant genetic variants.

"CDG diseases are often misdiagnosed and mistaken for other disease states," she says. "The symptoms resemble those of many other neurometabolic diseases and physicians do not always know what they are looking for."

She says that genetic variants that cause CDG most likely occur at a considerably higher frequency than what can be observed in a population. Most CDG diseases cause severe disabilities, and probably lead to premature death of the fetus and spontaneous abortion. "A spontaneously aborted fetus rarely ends up at a hospital to be gene tested," she notes.

About 120 different glycosylation disorders are currently known, a number that has increased threefold in 10 years, and there are probably many more to be discovered, she says. In a Canadian study on patients examined for unexplained developmental retardation, more than 10 percent could be traced to genetic defects in glycosylation processes.

Explore further: Phenotype varies for presumed pathogenic variants in KCNB1

More information: Rosaria Gandini et al. Structural basis for dolichylphosphate mannose biosynthesis, Nature Communications (2017). DOI: 10.1038/s41467-017-00187-2

Related Stories

Phenotype varies for presumed pathogenic variants in KCNB1

August 16, 2017
(HealthDay)—De novo KCNB1 missense and loss-of-function variants are associated with neurodevelopmental disorders, with or without seizures, according to a study published online Aug. 14 in JAMA Neurology.

A kidney disease's genetic clues are uncovered

March 6, 2017
Researchers have uncovered new genetic clues to understanding IgA nephropathy (IgAN), or Berger's disease, an autoimmune kidney disease and a common cause of kidney failure. The findings are relevant to IgAN as well as other ...

Holy glycosylation! New 'bat signal' flags distressed cells in childhood genetic diseases

June 12, 2012
Just as Gotham City uses the Bat Signal to call for Batman's aid, a new tool developed by scientists from the Sanford-Burnham Medical Research Institute in La Jolla, California, should serve as the cellular equivalent for ...

Research team identifies new genetic syndrome

March 4, 2014
Researchers at the National Institutes of Health (NIH) have identified a new genetic syndrome characterized by a constellation of health problems, including severe allergy, immune deficiency, autoimmunity and motor and neurocognitive ...

Genetic defect may confer resistance to certain viral infections

April 9, 2014
A National Institutes of Health (NIH) study reports that a rare genetic disease, while depleting patients of infection-fighting antibodies, may actually protect them from certain severe or recurrent viral infections. Researchers ...

Recommended for you

Protein found to be key component in irregularly excited brain cells

July 17, 2018
In a new study in mice, researchers have identified a key protein involved in the irregular brain cell activity seen in autism spectrum disorders and epilepsy. The protein, p53, is well-known in cancer biology as a tumor ...

World's largest study on allergic rhinitis reveals new risk genes

July 17, 2018
An international team of scientists led by Helmholtz Zentrum München and University of Copenhagen has presented the largest study so far on allergic rhinitis in the journal Nature Genetics. The data of nearly 900,000 participants ...

New platform poised to be next generation of genetic medicines

July 16, 2018
A City of Hope scientist has discovered a gene-editing technology that could efficiently and accurately correct the genetic defects that underlie certain diseases, positioning the new tool as the basis for the next generation ...

Overcoming a major barrier to developing liquid biopsies

July 16, 2018
The idea of testing blood or urine to find markers that help diagnose or treat disease holds great promise. But as technology has improved to allow researchers to examine tiny fragments of RNA, one major problem has led to ...

Genetic marker for drug risk in multiple sclerosis offers path toward precision medicine

July 16, 2018
A team of researchers has uncovered a specific gene variant associated with an adverse drug reaction resulting in liver injury in a people with multiple sclerosis (MS). It is the first time researchers have been able to establish ...

AI accurately predicts effects of genetic mutations in biological dark matter

July 16, 2018
A new machine learning framework, dubbed ExPecto, can predict the effects of genetic mutations in the so-called "dark matter" regions of the human genome. ExPecto pinpoints how specific mutations can disrupt the way genes ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.