Microcephaly brain size linked to mutation in stem cell micro environment

August 9, 2017
Dr Leonie Quinn looking at Drosophila (vinegar flies) through the microscope. Credit: Stuart Hay, ANU

New research highlights the significant role the surrounding environment of stem cells, known as the niche, might play in the brain size of babies with microcephaly.

Mutations in certain genes have been linked with small brains (), dwarfism and other developmental defects. Since the discovery of these microcephaly genes, extensive research has been conducted to determine how they cause smaller brains in patients.

Although much research has focused on defective function as the likely culprit in causing small brains in patients with a mutation in the microcephaly protein WDR62, researchers at the Australian National University (ANU) have found that reduced brain size is caused by loss of WDR62 function in the stem cell microenvironment.

"Using genetic models we found when this gene was mutated in the neural stem cells the wasn't affected at all. The neural stem cells were reduced but the other in the brain compensate," said Dr Quinn group leader at The John Curtin School of Medical Research at ANU.

"Instead, only reduction of WDR62 in the stem cell microenvironment (or niche) severely reduces brain growth by indirectly causing neural stem cell loss and impaired brain development."

The work has been done as a collaboration between ANU and Dr Dominic Ng's team at the University of Queensland.

Dr Quinn said the findings would help researchers not only understand how microcephaly mutations cause small brains in microcephaly patients, but also revealed the important connections between and their niche required for healthy brain development.

"We knew that the loss of the WDR62 microcephaly gene caused patients to have very small brains, dwarfism and other developmental defects, but we didn't know the mechanism," she said.

"By understanding the pathways that cause microcephaly, we will also gather information on how zika virus impacts development to cause microcephaly in the babies in Brazil."

The research has been published in the journal Stem Cell Reports.

Explore further: New insights into how the Zika virus causes microcephaly

More information: Nicholas R. Lim et al. Glial-Specific Functions of Microcephaly Protein WDR62 and Interaction with the Mitotic Kinase AURKA Are Essential for Drosophila Brain Growth, Stem Cell Reports (2017). DOI: 10.1016/j.stemcr.2017.05.015

Related Stories

New insights into how the Zika virus causes microcephaly

June 1, 2017
A study published today in Science shows that the Zika virus hijacks a human protein called Musashi-1 (MSI1) to allow it to replicate in, and kill, neural stem cells. Almost all MSI1 protein in the developing embryo is produced ...

In some genetic cases of microcephaly, stem cells fail to launch

August 24, 2016
In a very severe, genetic form of microcephaly, stem cells in the brain fail to divide, according to a new Columbia University Medical Center study that may provide important clues to understanding how the Zika virus affects ...

Scientists uncover how Zika virus causes microcephaly

February 17, 2017
A multidisciplinary team from The University of Texas Medical Branch at Galveston has uncovered the mechanisms that the Zika virus uses to alter brain development. These findings are detailed in Stem Cell Reports.

Study of genetic microcephaly in mice may reveal insights into Zika-based microcephaly

September 12, 2016
Microcephaly is a rare disorder that stunts brain development in utero, resulting in an abnormally small head. The Zika virus is one environmental cause of this devastating condition, but genetic defects can cause microcephaly, ...

Slow stem cell division may cause small brains

January 7, 2016
Duke University researchers have figured out how a developmental disease called microcephaly produces a much smaller brain than normal: Some cells are simply too slow as they proceed through the neuron production process.

Team discovers how Zika virus causes fetal brain damage

August 24, 2016
Infection by the Zika virus diverts a key protein necessary for neural cell division in the developing human fetus, thereby causing the birth defect microcephaly, a team of Yale scientists reported Aug. 24 in the journal ...

Recommended for you

How hepatitis C hides in the body

October 13, 2017
The Hepatitis C (HCV) virus is a sly enemy to have in one's body. Not only does it manage to make itself invisible to the immune system by breaking down communication between the immune cells, it also builds secret virus ...

Largest study yet of malaria in Africa shows historical rates of infection

October 12, 2017
(Medical Xpress)—A team of researchers with members from the Kenya Medical Research Institute, the University of Oxford and the University of KwaZulu-Natal has conducted the largest-ever study of the history of malaria ...

Promising new target for treatment of psoriasis is safe, study shows

October 11, 2017
A protein known to play a significant role in the development of psoriasis can be prevented from functioning without posing a risk to patients, scientists at King's College London have found.

Norovirus evades immune system by hiding out in rare gut cells

October 11, 2017
Noroviruses are the leading cause of non-bacterial gastroenteritis in the world and are estimated to cause 267 million infections and 20,000 deaths each year. This virus causes severe diarrhea, nausea, and stomach pain.

Research reveals how rabies can induce frenzied behavior

October 11, 2017
Scientists may finally understand how the rabies virus can drastically change its host's behavior to help spread the disease, which kills about 59,000 people annually.

Experimental Ebola vaccines elicit year-long immune response

October 11, 2017
Results from a large randomized, placebo-controlled clinical trial in Liberia show that two candidate Ebola vaccines pose no major safety concerns and can elicit immune responses by one month after initial vaccination that ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.