Navigation and spatial memory—new brain region identified to be involved

August 16, 2017, VIB (the Flanders Institute for Biotechnology)
Credit: CC0 Public Domain

Navigation in mammals including humans and rodents depends on specialized neural networks that encode the animal's location and trajectory in the environment, serving essentially as a GPS, findings that led to the 2014 Nobel Prize in Medicine. Failure of these networks to function properly, as seen in Alzheimer's disease and other neurological conditions, results in severe disorientation and memory deficits. Researchers at NERF (VIB-imec-KU Leuven) have now uncovered striking neural activity patterns in a brain area called the retrosplenial cortex that may assist with spatial memory and navigation.

The prime example of spatial information coding is the firing of so called in the , a brain area known for its role in navigation and memory formation. Place cells fire when an animal enters a specific place in its environment. At any given location, only a small fraction of place cells is active, leaving the remaining neurons largely silent. This sparse firing pattern maximizes information storage in memory networks, but at the same time minimizes energy demands.

The hippocampus, however, is not the only brain area involved in spatial orientation and learning. The is also highly active during navigation and retrieval and connects the hippocampus to the and other areas of the brain. Damage to the retrosplenial cortex results in and disorientation, and patients with Alzheimer's disease have reduced activity in their retrosplenial cortex.

To better understand the role of the retrosplenial cortex, Drs. Dun Mao and Steffen Kandler, researchers in the laboratories of Profs. Vincent Bonin and Bruce McNaughton at NERF, measured its activity in mice that moved on a treadmill fitted with tactile stimuli. In this setting they could precisely track the animal's behavior and location. By combining genetic labeling of cortical neurons and highly sensitive live microscopic techniques, the researchers were able to compare the activity of the neurons in the retrosplenial cortex with those in the hippocampus.

"Previous studies could only record from a few retrosplenial neurons simultaneously. With our cellular imaging technique, we could monitor the activity of hundreds to thousands of neurons simultaneously, which gave us a rich view into the neurons' activity patterns," explains prof. Vincent Bonin.

The researchers discovered a new group of cells that fire in smooth sequences as the animals run in the environment. Their activity resembled that of hippocampal place cells in terms of their sparse firing properties; however, the retrosplenial neurons responded differently to sensory inputs.

These results indicate that the retrosplenial cortex carries rich spatial activity, the mechanisms of which may be partially different from that of the hippocampus. They pave the way for a better understanding of how our brain processes spatial information. Prof. Vincent Bonin: "The next step is to investigate directly the relationship between retrosplenial activity and hippocampus as well as its link to visual inputs. It will also be interesting to know how activity in the retrosplenial cortex relates to the development of different neuronal diseases in mouse models."

Explore further: 'Conjunction junction' for brain's navigation function

More information: Dun Mao et al. Sparse orthogonal population representation of spatial context in the retrosplenial cortex, Nature Communications (2017). DOI: 10.1038/s41467-017-00180-9

Related Stories

'Conjunction junction' for brain's navigation function

July 9, 2015
Ever wake at night needing a drink of water and then find your way to the kitchen in the dark without stubbing your toe? Researchers at the University of California, San Diego say they have identified a region of the brain ...

Entorhinal cortex acts independently of the hippocampus in remembering movement, study finds

January 12, 2017
Until now, the hippocampus was considered the most important brain region for forming and recalling memory, with other regions only contributing as subordinates. But a study published today in Science finds that a brain region ...

A new experimental system sheds light on how memory loss may occur

June 30, 2016
Two interconnected brain areas - the hippocampus and the entorhinal cortex - help us to know where we are and to remember it later. By studying these brain areas, researchers at Baylor College of Medicine, Rice University, ...

New study demonstrates key brain region in contextual memories

August 12, 2014
Dartmouth researchers demonstrate in a new study that a previously understudied part of the brain, the retrosplenial cortex, is essential for forming the basis for contextual memories, which help you to recall events ranging ...

Speed data for the brain's navigation system

December 6, 2016
In order to guide us accurately through space, the brain needs a "sense" of the speed of our movement. But how do such stimuli actually reach the brain? Researchers at the German Center for Neurodegenerative Diseases (DZNE) ...

A little inhibition shapes the brain's GPS

April 10, 2017
Researchers from King's College London have discovered a specific class of inhibitory neurons in the cerebral cortex which plays a key role in how the brain encodes spatial information. The findings are published in the journal ...

Recommended for you

New technique helps uncover changes in ALS neurons

June 22, 2018
Northwestern Medicine scientists have discovered that some neurons affected by amyotrophic lateral sclerosis (ALS) display hypo-excitability, using a new method to measure electrical activity in cells, according to a study ...

Broken shuttle may interfere with learning in major brain disorders

June 22, 2018
Unable to carry signals based on sights and sounds to the genes that record memories, a broken shuttle protein may hinder learning in patients with intellectual disability, schizophrenia, and autism.

Watching stem cells repair spinal cord in real time

June 22, 2018
Monash University researchers have restored movement and regenerated nerves using stem cells in zebra fish where the spinal cord is severely damaged.

Scientists discover fundamental rule of brain plasticity

June 21, 2018
Our brains are famously flexible, or "plastic," because neurons can do new things by forging new or stronger connections with other neurons. But if some connections strengthen, neuroscientists have reasoned, neurons must ...

Scientists discover how brain signals travel to drive language performance

June 21, 2018
Effective verbal communication depends on one's ability to retrieve and select the appropriate words to convey an intended meaning. For many, this process is instinctive, but for someone who has suffered a stroke or another ...

Researchers find mechanism behind choosing alcohol over healthy rewards

June 21, 2018
A new study links molecular changes in the brain to behaviours that are central in addiction, such as choosing a drug over alternative rewards. The researchers have developed a method in which rats learn to get an alcohol ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.