How whip-like cell appendages promote bodily fluid flow

August 18, 2017
On the lateral ventricular wall, well-oriented cilia exhibit a coordinated beating motion that drives directional CSF flow. Daple mutant mice lose the orientation of ciliary bases, leading to stagnant CSF flow and hydrocephalus. Credit: Maki Takagishi

Researchers at Nagoya University have identified a molecule that enables cell appendages called cilia to beat in a coordinated way to drive the flow of fluid around the brain; this prevents the accumulation of this fluid, which otherwise leads to swelling of the head as found in the condition hydrocephalus.

Some cells in the body contain long, thin structures called cilia on their surface, which exhibit a whip-like motion that promotes the of past the cell. Although these cilia are known to play vital roles in the body, much remains to be understood about their molecular components and the mechanisms by which they work. This is especially true for the cilia on cells that line the ventricles of the , which contain (CSF) that has various functions including cushioning the brain against potentially damaging impacts.

A team at Nagoya University has shed light on this issue by revealing that a molecule called Daple is essential for cilia to adopt an arrangement by which they can beat in one direction at the same time, thereby creating a flow of fluid past the cell exterior. This arrangement on cell surfaces all along the lining of ventricles in the brain ensures the correct flow of CSF, which in turn prevents its accumulation associated with brain swelling known as hydrocephalus.

The team revealed the importance of Daple by creating that did not express the Daple protein. By around 20 days after birth, these mice had enlarged heads, similar to that in human hydrocephalus cases. Further studies showed that this was due to the flow of CSF being disrupted.

"We cut out part of the wall of the brain's lateral ventricle and investigated whether fluorescent beads would be propelled along its surface in a particular direction," says Maki Takagishi. "For mice with normal Daple expression, there was consistent movement in one direction, but this was absent in the Daple-knockout mice."

The findings also showed that the lack of Daple stopped cilia all adopting the same orientation on the same side of cells. Without the cilia all beating in the same direction, there would be no directional flow of CSF, leading to its accumulation and subsequent swelling.

According to Masahide Takahashi, "Daple functions through a cytoplasmic structure called microtubules, which are protein filaments involved in various functions including maintaining the overall structure of . When Daple is absent, the microtubules are unable to accurately specify the arrangement of structures called basal bodies, from which the cilia develop."

The team's findings should lead to a deeper understanding of diseases caused by the dysfunction of cilia. These include not only hydrocephalus, but also asthma and even female infertility, given the structural and functional similarities of in the trachea and oviduct.

Explore further: Team discovers genetic dysfunction connected to hydrocephalus

More information: Maki Takagishi et al. Daple Coordinates Planar Polarized Microtubule Dynamics in Ependymal Cells and Contributes to Hydrocephalus, Cell Reports (2017). DOI: 10.1016/j.celrep.2017.06.089

Related Stories

Team discovers genetic dysfunction connected to hydrocephalus

July 17, 2014
The mysterious condition once known as "water on the brain" became just a bit less murky this week thanks to a global research group led in part by a Case Western Reserve researcher. Professor Anthony Wynshaw-Boris, MD, PhD, ...

Study reveals gene's role in male infertility

October 13, 2016
A Virginia Commonwealth University-led research team has opened a fresh direction in the field of male infertility with a new study that examines the role of a particular gene in the formation of sperm flagella, which is ...

Recommended for you

Small but distinct differences among species mark evolution of human brain

November 23, 2017
The most dramatic divergence between humans and other primates can be found in the brain, the primary organ that gives our species its identity.

Team constructs whole-brain map of electrical connections key to forming memories

November 22, 2017
A team of neuroscientists at the University of Pennsylvania has constructed the first whole-brain map of electrical connectivity in the brain based on data from nearly 300 neurosurgical patients with electrodes implanted ...

To forget or to remember? Memory depends on subtle brain signals, scientists find

November 22, 2017
The fragrance of hot pumpkin pie can bring back pleasant memories of holidays past, while the scent of an antiseptic hospital room may cause a shudder. The power of odors to activate memories both pleasing and aversive exists ...

Pitch imperfect? How the brain decodes pitch may improve cochlear implants

November 22, 2017
Picture yourself with a friend in a crowded restaurant. The din of other diners, the clattering of dishes, the muffled notes of background music, the voice of your friend, not to mention your own – all compete for your ...

New research suggests high-intensity exercise boosts memory

November 22, 2017
The health advantages of high-intensity exercise are widely known but new research from McMaster University points to another major benefit: better memory.

Schizophrenia originates early in pregnancy, 'mini-brain' research suggests

November 20, 2017
Symptoms of schizophrenia usually appear in adolescence or young adulthood, but new research reveals that the brain disease likely begins very early in development, toward the end of the first trimester of pregnancy. The ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.