Brain activity between seizures in genetic form of epilepsy

September 13, 2017, Baylor College of Medicine

New research shows that in a mouse model of childhood absence epilepsy, brain activity is perturbed between seizures. The researchers speculate that this could underlie cognitive problems of the disease, which can persist despite treatment of seizures. That's according to research published today in the Journal of Physiology.

Absence seizures cause a short period of "blanking out" or staring into space, due to brief in the brain. In this new study, even after the seizures in the mice were treated, the abnormality that was previously seen between seizures persisted. This may provide a potential explanation for why some children with absence epilepsy may have continued deficits in cognitive performance, despite successful treatment of their seizures.

EEG, a test that measures in the brain, has thus far been primarily used to detect seizures, rather than identifying cognitive impairment. This study suggests that looking at EEG activity between seizures could help physicians diagnose and monitor cognitive and other attentional deficits in epilepsy.

Jeffrey Noebels and his team at Baylor College of Medicine in Houston, Texas used two genetic mouse models of absence epilepsy and compared them to unaffected mice. They analysed the EEG when the mice weren't experiencing seizures, both before and after administering medications that either eliminated or exacerbated their seizures. They found the abnormality in brain activity both before and after the medication.

Although human studies have linked these abnormalities with attention deficits, Noebels and his team did not specifically perform any behavioural tests in the mice. Therefore, they cannot conclude that the abnormalities cause deficits in attention.

Depending on results from further behavioural studies in mice and humans, the abnormalities could then be treated in parallel with seizures. This could help treat patients who experience comorbidities despite successful treatment of seizures.

Atul Maheshwari, first author of the study said, "We plan to evaluate whether the abnormalities we found are associated with deficits in attention in these and other mouse models. In addition, we plan to treat these mice with standard treatments for attention deficit disorder such as Ritalin and determine whether the behaviour and the EEG abnormalities can be corrected."

Explore further: Heat a trigger for seizures

More information: Atul Maheshwari et al. Persistent aberrant cortical phase-amplitude coupling following seizure treatment in absence epilepsy models, The Journal of Physiology (2017). DOI: 10.1113/JP274696

Related Stories

Heat a trigger for seizures

September 7, 2017
Fever is the most common trigger for seizures in children between 5 months and 6 years of age. But the underlying cause is not always clear.

Researchers find widespread disruption of brain activity during absence seizures

November 8, 2016
Scientists believed that absence seizures—the brief loss of consciousness often mistaken for day-dreaming—was caused by a localized disruption of brain activity. A new Yale study finds the entire brain is involved in ...

New method identifies brain regions most likely to cause epilepsy seizures

August 17, 2017
Scientists have developed a new way to detect which areas of the brain contribute most greatly to epilepsy seizures, according to a PLOS Computational Biology study. The strategy, devised by Marinho Lopes of the University ...

Genes influence sleep/wake timing of seizures in people with epilepsy

March 7, 2016
New research from the Epilepsy Phenome/Genome Project shows that genetics plays a role in sleep/wake timing of seizures. Researchers studied 1,395 individuals with epilepsy in families containing multiple people with epilepsy ...

New study focuses on treatment for epilepsy caused by tuberous sclerosis

May 8, 2017
A clinical trial of a drug that researchers hope can prevent or delay the onset of epilepsy in children with tuberous sclerosis has begun at McGovern Medical School at The University of Texas Health Science Center at Houston ...

Treatments available for drug-resistant epilepsy

August 22, 2016
One in 26 people will develop epilepsy – a chronic disease characterized by unpredictable seizures—in their lifetime.

Recommended for you

Cognitive training helps regain a younger-working brain

January 23, 2018
Relentless cognitive decline as we age is worrisome, and it is widely thought to be an unavoidable negative aspect of normal aging. Researchers at the Center for BrainHealth at The University of Texas at Dallas, however, ...

Lifting the veil on 'valence,' brain study reveals roots of desire, dislike

January 23, 2018
The amygdala is a tiny hub of emotions where in 2016 a team led by MIT neuroscientist Kay Tye found specific populations of neurons that assign good or bad feelings, or "valence," to experience. Learning to associate pleasure ...

Your brain responses to music reveal if you're a musician or not

January 23, 2018
How your brain responds to music listening can reveal whether you have received musical training, according to new Nordic research conducted in Finland (University of Jyväskylä and AMI Center) and Denmark (Aarhus University).

New neuron-like cells allow investigation into synthesis of vital cellular components

January 22, 2018
Neuron-like cells created from a readily available cell line have allowed researchers to investigate how the human brain makes a metabolic building block essential for the survival of all living organisms. A team led by researchers ...

Finding unravels nature of cognitive inflexibility in fragile X syndrome

January 22, 2018
Mice with the genetic defect that causes fragile X syndrome (FXS) learn and remember normally, but show an inability to learn new information that contradicts what they initially learned, shows a new study by a team of neuroscientists. ...

Epilepsy linked to brain volume and thickness differences

January 22, 2018
Epilepsy is associated with thickness and volume differences in the grey matter of several brain regions, according to new research led by UCL and the Keck School of Medicine of USC.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.