A piece of the puzzle: Eight autism-related mutations in one gene

September 19, 2017
Credit: CC0 Public Domain

Scientists have identified a hotspot for autism-related mutations in a single gene.

By studying data from thousands of genomes of people with , an interdisciplinary team of USC researchers homed in on a gene called TRIO. The TRIO gene produces a protein that influences the development and strength—or weakness—of the connections between brain .

The scientists found eight autism-associated mutations clustered within a small region of the Trio protein. Changes in the protein's function early in a child's can, like a wayward driver on a freeway, set off a chain reaction that hampers connections between brain cells and, consequently, hinder the brain's ability to store and process information.

"I have never seen this number of autism-related mutations in such a small area," said Bruce Herring, the study's corresponding author and a neurobiologist at the USC Dornsife College of Letters, Arts and Sciences. "The likelihood that this number of mutations occurs by chance is 1 in 1.8 trillion. We're pretty confident these mutations contribute to the development of autism-related disorders."

Autism affects about 3.5 million Americans, and about 1 in 68 U.S. children, according to the Centers for Disease Control and Prevention. It is known to hamper socialization and communication and is often accompanied by intellectual disability. No single cause of autism has been identified.

"Many genes have been implicated in autism," said Herring, an associate professor for USC Dornsife's Section of Neurobiology. "What we want to know is: What do these genes have in common? We are looking for the points of convergence that ultimately lead to this spectrum of disorders."

The findings were published Sept. 19 in the journal Nature Communications.

A mass of genomic information

Herring's laboratory at USC Dornsife studies the molecular mechanisms underlying neuroplasticity, and this includes the strengthening or weakening of synaptic connections between cells that influence the brain's ability to store and process information. He explores how disruption of those mechanisms might lead to neurodevelopmental and neuropsychiatric diseases such as autism.

For this study, Herring and his team studied the genomes of 4,890 people with autism-related disorders. Sifting through the data, they hunted for genetic mutations that may have a significant role in the development of autism.

"TRIO ended up very high on our list," Herring said.

The team found eight mutations associated with autism in a small area of the TRIO gene—the GEF1/DH1 domain. This domain encodes a specific area of the Trio protein that turns on another protein, Rac1, that builds the scaffolding for the brain's connections.

In a normal brain, the GEF1/DH1 domain binds to and activates Rac1, prompting the growth of actin filaments that form the scaffolding.

Most of the autism-related mutations discovered in this study prevent the Trio protein's ability to activate Rac1. The interference causes the scaffolds to break down, weakening the brain's connections. As a result, the brain cells have trouble communicating with each other.

"It is really striking that all disruptive mutations are found in the positions where they either weaken the domain structure or block its interactions with Rac1, a key hub for the neural development pathways," said study co-author Vsevolod Seva Katritch, an assistant professor for biological sciences at the USC Michelson Center for Convergent Bioscience and USC Dornsife.

Imbalance in Trio function

Previous studies have identified a variety of types of problems with brain cell connections that are linked to autism. In some cases, the connections between brain cells appear weaker than normal. In other cases, they seem too strong.

"Most of the mutations we have found in Trio weaken the protein and result in weaker connections between brain cells," Herring said. "However, one mutation found in an individual with severe intellectual disability surprised us. It causes Trio to become much stronger. When this mutant form of Trio was put into brain cells, it caused them to have way too many connections."

So, are weaker connections or stronger connections between brain cells to blame for the development of autism-related disorders?

"I don't think it really matters if connections between brain cells are too strong or too weak. I think either case can contribute to the development of autism," Herring said. "The ability of our brains to increase and decrease the strength of connections between brain cells is essential for normal brain development; our brains must be plastic. Mutations that push connections too far in either direction are likely to impede our brain's ability to change in appropriate ways."

"We believe autism-spectrum disorders are likely to develop from mutations that take away the brain's ability to change during a critical time point in a child's brain development, when the brain cells are trying to establish the appropriate connections and build the right circuits," Herring said.

Herring's group hopes that these new discoveries will be useful in developing new, more effective strategies for treating autism spectrum disorders.

A potential link between autism and schizophrenia

Equally interesting to what Herring's lab found is what they didn't find. TRIO has a sister gene called KALRN. The two genes are very similar and are part of the same signaling pathway in brain cells.

There are disease-related mutations in KALRN, but they're not in individuals with autism-spectrum disorder. They are in individuals with schizophrenia.

"We think the critical difference between these two genes is when they are active," Herring said. "The TRIO gene is active when we are very young. The KALRN gene doesn't really turn on until adolescence.

"If you disrupt this signaling pathway in when we are young through TRIO mutations, we believe that this contributes to development of autism. This makes sense since autism-related symptoms appear in young children."

But KALRN disrupt this pathway during the teen years, a time when the is more developed, Herring said. "This makes sense because schizophrenia symptoms appear in adolescence."

Herring's group hopes that these new discoveries will be useful in developing new, more effective strategies for treating both spectrum disorders and schizophrenia.

Explore further: Late-breaking mutations may play an important role in autism

More information: Anastasiia Sadybekov et al, An autism spectrum disorder-related de novo mutation hotspot discovered in the GEF1 domain of Trio, Nature Communications (2017). DOI: 10.1038/s41467-017-00472-0

Related Stories

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Scientists discover autism gene slows down brain cell communication

November 8, 2016
Scientists at McMaster University's Stem Cell and Cancer Research Institute in collaboration with Sick Children's Hospital have discovered an important 'on' button in DIXDC1 protein that instructs brain cells to form mature ...

Team sheds light on genetic mutations in autism disorders

January 20, 2015
Recent research has linked autism with a lack of "pruning" in developing brain connections, but a new Dartmouth study suggests instead it is the excessive growth of new connections that causes sensory overload in people with ...

Spontaneous mutations in key brain gene are a cause of autism

September 18, 2014
Spontaneous mutations in the brain gene TBR1 disrupt the function of the encoded protein in children with severe autism. In addition, there is a direct link between TBR1 and FOXP2, a well-known language-related protein. These ...

Gene family mutation, autism linked

January 28, 2014
(Medical Xpress)—Harvard Medical School researchers at McLean Hospital have found that a gene family linked to autism, EphB, is essential for proper brain wiring during development. The findings suggest that the abnormal ...

Brain study reveals insights into genetic basis of autism

July 13, 2015
UNSW Australia scientists have discovered a link between autism and genetic changes in some segments of DNA that are responsible for switching on genes in the brain.

Recommended for you

Gene variants identified that may influence sexual orientation in men and boys

December 8, 2017
(Medical Xpress)—A large team of researchers from several institutions in the U.S. and one each from Australia and the U.K. has found two gene variants that appear to be more prevalent in gay men than straight men, adding ...

Disease caused by reduction of most abundant cellular protein identified

December 8, 2017
An international team of scientists and doctors has identified a new disease that results in low levels of a common protein found inside our cells.

Study finds genetic mutation causes 'vicious cycle' in most common form of amyotrophic lateral sclerosis

December 8, 2017
University of Michigan-led research brings scientists one step closer to understanding the development of neurodegenerative disorders such as ALS.

Mutations in neurons accumulate as we age: The process may explain normal cognitive decline and neurodegeneration

December 7, 2017
Scientists have wondered whether somatic (non-inherited) mutations play a role in aging and brain degeneration, but until recently there was no good technology to test this idea. A study published online today in Science, ...

Researchers find genes may 'snowball' obesity

December 7, 2017
There are nine genes that make you gain more weight if you already have a high body mass index, McMaster University researchers have found.

Gene therapy shows promise against blood-clotting disease

December 7, 2017
Gene therapy has freed 10 men from nearly all symptoms of hemophilia for a year so far, in a study that fuels hopes that a one-time treatment can give long-lasting help and perhaps even cure the blood disease.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.