Scientists find interaction between two key proteins regulates development of neurons

September 14, 2017
Salk scientists find that interaction between two key proteins regulates development of neurons. A fluorescent microscopy image shows Nup153 (red) in pore complexes encircling and associating with Sox2 (green) in a precursor cell nucleus. Credit: Salk Institute/Waitt Center

Salk Institute scientists have discovered that an interaction between two key proteins helps regulate and maintain the cells that produce neurons. The work, published in Cell Stem Cell on September 14, 2017, offers insight into why an imbalance between these precursor cells and neurons might contribute to mental illness or age-related brain disease.

"Increasingly, we are learning that diseases like schizophrenia, depression and Alzheimer's all have a ," says Rusty Gage, a professor in Salk's Laboratory of Genetics and senior author of the new work. "So we are eager to understand how specific brain develop, what keeps them healthy and why advancing age or other factors can lead to disease."

In 1998, Gage led a research team which discovered that adult brains do produce new , contrary to decades of dogma saying we are born with all the neurons we will ever have. Since then, he has been elucidating various aspects of this neurogenesis as well as what goes wrong in various neurological disorders. (In 2015, for example, his lab identified a cellular basis for bipolar disorder.)

The new work sought to understand how neural maintain their own cellular identity as they divide and create neurons or astrocytes. Gage's team already knew that the cell nucleus—the ball-shaped membrane containing the genome—looks very different in the three cell types, with different genes active in each. Another Salk professor and a coauthor on the paper, Martin Hetzer, previously found that proteins in the nuclear membrane influence gene expression in different kinds of cancer cells. The Gage team sought the expertise of the Hetzer lab to explore whether something similar was at play in brain cells.

"Research from my lab has found that the nuclear membrane is a dynamic structure that plays a key role in developmental gene regulation," says Hetzer, Salk's chief science officer and holder of the Jesse and Caryl Philips Foundation Chair. "So we were very interested to see what the Gage lab, working with entirely different cell types, would uncover."

Gage's team conducted screens in cells from mice and rats to see which genes were being transcribed into proteins in precursor cells, immature neurons and astrocytes. In the precursors, they discovered high numbers of a protein called Nup153, which is part of a multiprotein complex that forms a gatekeeping pore in the , controlling what goes in or out. Immature neurons had an intermediate level of Nup153, and astrocytes had the lowest level. Because all three have roughly the same number of nuclear pores, the team concluded that Nup153 levels influence cell type and that a high level is necessary to maintain cells' precursor status. This was supported by the fact that disrupting Nup153's function in the precursor cells triggered differentiation.

Interestingly, Nup153 levels are also known to be high in cells with elevated levels of a mobile protein called Sox2, a transcription factor that floats around the nucleus and binds to genes and turns them on or off. By fluorescently tagging Nup153 and Sox2 in the different cells types, they observed that Nup153 was interacting with Sox2.

"The fact that we were able to connect transcription factors, which are mobile switches, to the pore complex, which is a very stable structure, offers a clue as to how cells maintain their identity through regulated gene expression," says Tomohisa Toda, a Salk research associate and first author of the paper.

Next, the team wants to explore how the interaction of the pore complex with other transcription factors affects neuronal function, which could yield insights into the underlying causes of certain neurological disorders.

Explore further: Heart disease, leukemia linked to dysfunction in nucleus

More information: Nup153 Interacts with Sox2 to Enable Bimodal Gene Regulation and Maintenance of Neural Progenitor Cells, Cell Stem Cell (2017). dx.doi.org/10.1016/j.stem.2017.08.012

Related Stories

Heart disease, leukemia linked to dysfunction in nucleus

November 2, 2016
We put things into a container to keep them organized and safe. In cells, the nucleus has a similar role: keeping DNA protected and intact within an enveloping membrane. But a new study by Salk Institute scientists, detailed ...

A star is born: Lesser-known brain cell takes center stage

June 6, 2017
Neurons have long enjoyed the spotlight in neuroscience—and for good reason: they are incredibly important cellular actors. But, increasingly, star-shaped support cells called astrocytes are being seen as more than bit ...

Small molecule keeps new adult neurons from straying, may be tied to schizophrenia

July 6, 2016
A small stretch of ribonucleic acid called microRNA could make the difference between a healthy adult brain and one that's prone to disorders including schizophrenia.

Researchers learn how to grow old brain cells using stem cell technology

October 8, 2015
For the first time, scientists can use skin samples from older patients to create brain cells without rolling back the youthfulness clock in the cells first. The new technique, which yields cells resembling those found in ...

The brain's stunning genomic diversity revealed

September 12, 2016
Our brains contain a surprising diversity of DNA. Even though we are taught that every cell in our body has the same DNA, in fact most cells in the brain have changes to their DNA that make each neuron a little different.

Recommended for you

Brain training can improve our understanding of speech in noisy places

October 19, 2017
For many people with hearing challenges, trying to follow a conversation in a crowded restaurant or other noisy venue is a major struggle, even with hearing aids. Now researchers reporting in Current Biology on October 19th ...

Investigating the most common genetic contributor to Parkinson's disease

October 19, 2017
LRRK2 gene mutations are the most common genetic cause of Parkinson's disease (PD), but the normal physiological role of this gene in the brain remains unclear. In a paper published in Neuron, Brigham and Women's Hospital ...

Brain takes seconds to switch modes during tasks

October 19, 2017
The brain rapidly switches between operational modes in response to tasks and what is replayed can predict how well a task will be completed, according to a new UCL study in rats.

Researchers find shifting relationship between flexibility, modularity in the brain

October 19, 2017
A new study by Rice University researchers takes a step toward what they see as key to the advance of neuroscience: a better understanding of the relationship between the brain's flexibility and its modularity.

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Want to control your dreams? Here's how

October 19, 2017
New research at the University of Adelaide has found that a specific combination of techniques will increase people's chances of having lucid dreams, in which the dreamer is aware they're dreaming while it's still happening ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.