Rapamycin treatment prevents crippling abnormal bone formation after severe limb injuries

October 11, 2017

Individuals who experience severe injuries to their extremities, whether due to military combat or other trauma, often develop abnormal extra-skeletal bone in the damaged or healing tissue, a process known as heterotopic ossification (HO). This post-traumatic abnormal wound healing can interfere with recovery, causing chronic pain, reduced mobility, and impaired prosthetic limb function. A new study in The American Journal of Pathology describes a potential breakthrough for treatment of these patients: Rapamycin, an FDA-approved drug already on the market, was found to dramatically reduce the presence of HO in rats, suggesting it has the potential to become the first effective treatment to prevent HO.

"HO is a significant complication of combat-related blast trauma and is described by clinicians as the single most critical barrier to functional mobility, independence, and return to military service. Despite the exceptionally high rate of HO in combat-injured military personnel (estimated at about 65%), there still remains no primary prophylactic regimen. The standard of care is surgical resection, but even with surgical resection, most patients fail to regain their normal range of motion and often suffer from and joint contractures," explained Thomas A. Davis, PhD, Vice Deputy Chair of Research, Department of Surgery, Uniformed Services University, the Walter Reed National Military Medical Center (Bethesda, MD), and the Naval Medical Research Center (Silver Spring, MD).

The study used a proven rodent model of HO that mimics the injuries seen in combat casualties. The model replicates blast-related limb injury, femoral fracture, quadriceps crush injury amputation, and infection with methicillin-resistant Staphylococcus aureus (MRSA). Using the model, the researchers demonstrated a significant reduction of HO in animals treated with . For instance, 2.5 mg/kg of rapamycin for 14 days resulted in a 90% reduction of total new bone and 83% reduction in soft tissue ectopic bone compared to controls at 84 days after injury.

Additionally, the treatment reduced the number of progenitor cells in injured tissue that give rise to abnormal bone formation. It also decreased the gene expression of key factors associated with extracellular matrix remodelling, bone formation, inflammation, and .

These findings are important because they define a potential prophylactic strategy to prevent HO in combat casualties and civilians at high risk of this disabling condition, thereby dramatically improving the function and quality of life of patients at risk. They indicate that mammalian target of rapamycin (Mtor)-dependent inhibition is a viable therapeutic option to prevent the development of blast trauma-induced HO. "Given the fact that rapamycin is an FDA-approved drug makes it a promising candidate for fast-track translation in the clinic. We are cautiously optimistic, appreciating that the transition from laboratory animal models to the clinical setting is often challenging," commented Dr. Davis.

Rapamycin (Sirolimus) is a bacterial macrolide that is FDA-approved for use as an immunosuppressant, such as preventing rejection of kidney transplants. Through the mTOR signalling pathway, it is involved in the regulation of many cellular processes, including cell survival, metabolism, proliferation, differentiation, and senescence. In the model used in this study, although rapamycin had an anti-angiogenic effect (as indicated for example by less blood vessel formation in the injured site), it did not delay wound closure or affect wound healing.

Explore further: Transplant drug may provide benefits after spinal cord injury

More information: "Inhibition of Mammalian Target of Rapamycin Signaling with Rapamycin Prevents Trauma-Induced Heterotopic Ossification," American Journal of Pathology (2017). DOI: 10.1016/j.ajpath.2017.07.010

Related Stories

Transplant drug may provide benefits after spinal cord injury

July 8, 2016
New research in mice indicates that a drug commonly used to suppress the immune system in recipients of organ transplants may also reduce tissue damage and neuropathic pain after spinal cord injury. The findings are published ...

Inhibition of mTOR restores corticosteroid sensitivity in COPD

January 23, 2016
(HealthDay)—Inhibition of mammalian target of rapamycin (mTOR) by rapamycin restores corticosteroid sensitivity in patients with chronic obstructive pulmonary disease (COPD), according to a study published in the Jan. 15 ...

Treatment studied to help patients 'burned to the bone'

September 25, 2014
An anti-inflammatory treatment, studied in the labs of regenerative medicine specialists and trauma surgeons, may prevent what's become one of the war-defining injuries for today's troops.

Study reveals how cancer drug causes diabetic-like state

April 3, 2012
Scientists at Dana-Farber Cancer Institute have discovered why diabetic-like symptoms develop in some patients given rapamycin, an immune-suppressant drug that also has shown anti-cancer activity and may even slow ageing.

Wonder wrap: New ways to protect injured limbs

October 14, 2016
The moments after a traumatic limb injury resulting from an explosive blast are critical. Blood is lost, tissue begins to dry and deteriorate, and dirt and harmful bacteria may enter the wound—increasing the risk of infection, ...

Stem-cell-protecting drug could prevent the harmful side effects of radiation therapy

September 6, 2012
Radiation therapy is one of the most widely used cancer treatments, but it often damages normal tissue and can lead to debilitating conditions. A class of drugs known as mammalian target of rapamycin (mTOR) inhibitors can ...

Recommended for you

Novel therapies for multidrug-resistant bacteria

October 23, 2017
During this innovative study published in PLOS One, researchers found that novel classes of compounds, such as metal-complexes, can be used as alternatives to or to supplement traditional antibiotics, which have become ineffective ...

Key discoveries offer significant hope of reversing antibiotic resistance

October 23, 2017
Resistance to antibiotics is becoming increasingly prevalent and threatens to undermine healthcare systems across the globe. Antibiotics including penicillins, cephalosporins and carbapenems are known as β-lactams and are ...

Pneumonia vaccine under development provides 'most comprehensive coverage' to date, alleviates antimicrobial concerns

October 20, 2017
In 2004, pneumonia killed more than 2 million children worldwide, according to the World Health Organization. By 2015, the number was less than 1 million.

Newly discovered viral marker could help predict flu severity in infected patients

October 20, 2017
Flu viruses contain defective genetic material that may activate the immune system in infected patients, and new research published in PLOS Pathogens suggests that lower levels of these molecules could increase flu severity.

Migraines may be the brain's way of dealing with oxidative stress

October 19, 2017
A new perspective article highlights a compelling theory about migraine attacks: that they are an integrated mechanism by which the brain protects and repairs itself. Recent insightful findings and potential ways to use them ...

H7N9 influenza is both lethal and transmissible in animal model for flu

October 19, 2017
In 2013, an influenza virus that had never before been detected began circulating among poultry in China. It caused several waves of human infection and in late 2016, the number of people to become sick from the H7N9 virus ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.