Brain implant tested in human patients found to improve memory recall

November 15, 2017 by Bob Yirka, Medical Xpress report
Credit: CC0 Public Domain

(Medical Xpress)—A team of researchers with the University of Southern California and the Wake Forest School of Medicine has conducted experiments involving implanting electrodes into the brains of human volunteers to see if doing so might improve memory recall. The group gave a presentation at this year's Society for Neuroscience meeting recently outlining the study and what they found.

Prior research has shown that inserting electrodes into the brains of animals can improve memory recall—in this new effort, the researchers discovered the same is true for humans.

To test the idea that sending tiny electrical pulses to parts of the involved in memory recall might improve memory, the researchers worked with doctors treating epilepsy patients—each of the patients was scheduled to have a brain electrode implanted as a treatment option. The researchers got 20 of the patients to agree to having another similar electrode implanted into their brains at the same time.

The experiment consisted of two parts. The first was to use the implant to listen for and record electrical activity in the brain while the volunteers engaged in memory exercises. The second part involved mimicking the signals that had been recorded in the first part—sending tiny pulses of electricity to parts of the brain involved in and retrieval. The experiments sought to measure two kinds of memory, short-term and working memory. The first, as the name implies, is the ability to remember something that happened recently. Working memory, on the other hand, is used to keep track of things as they are happening.

In looking at all the data from all of the patients, the researchers reported that they found brain stimulation via implants led to an average 15 percent improvement in short-term memory and a 25 percent improvement in across all the volunteers—similar to the results found in test animals. They noted that applying random bursts of electrical stimulation, on the other hand, tended to make worse.

While the experiments were conducted to learn more about memory retention and recall in general, the research is aimed specifically at helping people with loss due to ailments such as dementia and Alzheimer's disease.

Explore further: Neuroscientists improve human memory by electrically stimulating brain

More information: Abstract: 168.18 / SS45 - Fixing broken memory: Facilitation of delayed match to sample working memory in human subjects via a neural prosthetic for human memory, www.abstractsonline.com/pp8/in … 6/presentation/11106

Abstract
Development of a neural prosthetic for human memory requires intervention to correct dysfunctional hippocampal circuitry - i.e. the interconnected neuronal ensembles which organize the CA1 and CA3 subfields into hierarchical networks to process sensory inputs into working memory. Prior investigations by the WFBMC-USC DARPA RAM project team have demonstrated that correct recall of information within a delayed-match-to-sample (DMS) task is contingent upon the robustness of initial encoding of the task stimuli within hippocampus. These studies have yielded a prosthetic system that restored DMS task-related memory in rodents and nonhuman primates, and is now extended to successful memory facilitation in humans.
Human subjects undergoing Phase II invasive monitoring for intractable epilepsy were implanted with macro-micro depth electrodes targeting the hippocampal CA1 and CA3 cell layers. In the initial (training) session, subjects performed a visual DMS memory task in which they remembered screen images during Sample presentation, then recalled those images in the subsequent Match phase of the task after an interposed delay of 1 to 75 sec. Neural recordings from the training session were modeled via a multi-input/multi-output (MIMO) sparse nonlinear model of CA3 and CA1 neuron firing predicted activation of likely connected CA3-to-CA1 cells during Correct Trial performance. During a second (stim test) session, subjects received MIMO model-driven microelectrical stimulation of the CA1 cell layer during the encoding (Sample) phase for approximately 30% of trials within the DMS task. Cognitive task performance on MIMO stimulated trials was compared with non-stimulated and random pattern-stimulated trials. MIMO stimulation resulted in a 15-25% improvement in DMS task performance in five patients, demonstrating successful implementation of a new neural prosthetic system for the restoration of damaged human memory.

Related Stories

Neuroscientists improve human memory by electrically stimulating brain

October 25, 2017
Neuroscientists at the David Geffen School of Medicine at UCLA have discovered precisely where and how to electrically stimulate the human brain to enhance people's recollection of distinct memories. People with epilepsy ...

Researchers show brain stimulation restores memory during lapses

April 20, 2017
A team of neuroscientists at the University of Pennsylvania has shown for the first time that electrical stimulation delivered when memory is predicted to fail can improve memory function in the human brain. That same stimulation ...

Think you know how to improve your memory? Think again

May 31, 2017
We all want to improve our memory, but research unveiled by the University of Toronto's Dr. Katherine Duncan today shows that we need to switch our strategies. Memory isn't a single entity, and separate memory processes, ...

Brain stimulation used like a scalpel to improve memory

January 19, 2017
Northwestern Medicine scientists showed for the first time that non-invasive brain stimulation can be used like a scalpel, rather than like a hammer, to cause a specific improvement in precise memory.

Long-term memories made with meaningful information

June 20, 2017
When trying to memorize information, it is better to relate it to something meaningful rather than repeat it again and again to make it stick, according to a recent Baycrest Health Sciences study published in NeuroImage.

Mechanism behind the activation of dormant memory cells discovered

February 20, 2014
The electrical stimulation of the hippocampus in in-vivo experiments activates precisely the same receptor complexes as learning or memory recall. This has been discovered for the first time and the finding has now been published ...

Recommended for you

New parts of the brain become active after students learn physics

May 24, 2018
Parts of the brain not traditionally associated with learning science become active when people are confronted with solving physics problems, a new study shows.

Bursts of brain activity linked to memory reactivation

May 24, 2018
Leading theories propose that sleep presents an opportune time for important, new memories to become stabilized. And it's long been known which brain waves are produced during sleep. But in a new study, researchers set out ...

Researchers define molecular basis to explain link between a pregnant mother's nutrition and infant growth

May 24, 2018
For years, pregnant mothers have questioned their nutritional habits: "Will eating more cause my baby to be overweight?" Or, "I'm eating for two, so it won't hurt to have an extra serving, right?"

Study suggests brainwave link between disparate disorders

May 24, 2018
A brainwave abnormality could be a common link between Parkinson's disease, neuropathic pain, tinnitus and depression—a link that authors of a new study suggest could lead to treatment for all four conditions.

In a break with dogma, myelin boosts neuron growth in spinal cord injuries

May 23, 2018
Recovery after severe spinal cord injury is notoriously fraught, with permanent paralysis often the result. In recent years, researchers have increasingly turned to stem cell-based therapies as a potential method for repairing ...

Memory molecule limits plasticity by calibrating calcium

May 23, 2018
The brain has an incredible capacity to support a lifetime of learning and memory. Each new experience fundamentally alters the connections between cells in the brain called synapses. To accommodate synaptic alterations, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.