Researchers show brain stimulation restores memory during lapses

April 20, 2017
Credit: Human Brain Project

A team of neuroscientists at the University of Pennsylvania has shown for the first time that electrical stimulation delivered when memory is predicted to fail can improve memory function in the human brain. That same stimulation generally becomes disruptive when electrical pulses arrive during periods of effective memory function.

The research team included Michael Kahana, professor of psychology and principal investigator of the Defense Advanced Research Projects Agency's Restoring Active Memory program; Youssef Ezzyat, a senior data scientist in Kahana's lab; and Daniel Rizzuto, director of cognitive neuromodulation at Penn. They published their findings in the journal Current Biology.

This work is an important step toward the long-term goal of Restoring Active Memory, a four-year Department of Defense project aimed at developing next-generation technologies that improve in people who suffer from loss. It illustrates an important link between appropriately timed deep- stimulation and its potential therapeutic benefits.

To get to this point, the Penn team first had to understand and decode signaling patterns that correspond to highs and lows of memory .

"By applying machine-learning methods to electrical signals measured at widespread locations throughout the ," said Ezzyat, lead paper author, "we are able to identify neural activity that indicates when a given patient will have lapses of memory encoding."

Using this model, Kahana's team examined how the effects of stimulation differ during poor versus effective memory function. The study involved neurosurgical patients receiving treatment for epilepsy at the Hospital of the University of Pennsylvania, the Thomas Jefferson University Hospital, the Dartmouth-Hitchcock Medical Center, the Emory University Hospital, the University of Texas Southwestern, the Mayo Clinic, Columbia University, the National Institutes of Health Clinical Center and the University of Washington. Participants were asked to study and recall lists of common words while receiving safe levels of .

During this process, the Penn team recorded electrical activity from electrodes implanted in the patients' brains as part of routine clinical care. These recordings identified the biomarkers of successful memory function, activity patterns that occur when the brain effectively creates new memories.

"We found that, when arrives during periods of effective memory, memory worsens," Kahana said. "But when the electrical stimulation arrives at times of poor function, memory is significantly improved."

Kahana likens it to traffic patterns in the brain: stimulating the brain during a backup restores the normal flow of traffic.

Gaining insight into this process could improve the lives of many types of patients, particularly those with traumatic brain injury or neurological diseases, such Alzheimer's. "Technology based on this type of stimulation," Rizzuto said, "could produce meaningful gains in memory performance, but more work is needed to move from proof-of-concept to an actual therapeutic platform."

This past November, the RAM team publicly released an extensive intracranial brain recording and stimulation dataset that included more than 1,000 hours of data from 150 patients performing memory tasks.

Explore further: Brain stimulation used like a scalpel to improve memory

Related Stories

Brain stimulation used like a scalpel to improve memory

January 19, 2017
Northwestern Medicine scientists showed for the first time that non-invasive brain stimulation can be used like a scalpel, rather than like a hammer, to cause a specific improvement in precise memory.

Buzzing the brain with electricity can boost working memory

March 14, 2017
Scientists have uncovered a method for improving short-term working memory, by stimulating the brain with electricity to synchronise brain waves.

Deep brain stimulation may not boost memory

December 7, 2016
Deep brain stimulation (DBS) of areas in the brain known to be involved in making memories does not improve memory performance, according to a study by Columbia University researchers published December 7 in Neuron. The study ...

Improving memory with magnets

March 27, 2017
The ability to remember sounds, and manipulate them in our minds, is incredibly important to our daily lives—without it we would not be able to understand a sentence, or do simple arithmetic. New research is shedding light ...

Sound waves boost older adult' memory, deep sleep

March 8, 2017
Gentle sound stimulation—such as the rush of a waterfall—synchronized to the rhythm of brain waves significantly enhanced deep sleep in older adults and improved their ability to recall words, reports a new Northwestern ...

Mechanism behind the activation of dormant memory cells discovered

February 20, 2014
The electrical stimulation of the hippocampus in in-vivo experiments activates precisely the same receptor complexes as learning or memory recall. This has been discovered for the first time and the finding has now been published ...

Recommended for you

Study finds graspable objects grab attention more than images of objects do

December 15, 2017
Does having the potential to act upon an object have a unique influence on behavior and brain responses to the object? That is the question Jacqueline Snow, assistant professor of psychology at the University of Nevada, Reno, ...

Little understood cell helps mice see color

December 14, 2017
Researchers at the University of Colorado Anschutz Medical Campus have discovered that color vision in mice is far more complex than originally thought, opening the door to experiments that could potentially lead to new treatments ...

Scientists chart how brain signals connect to neurons

December 14, 2017
Scientists at Johns Hopkins have used supercomputers to create an atomic scale map that tracks how the signaling chemical glutamate binds to a neuron in the brain. The findings, say the scientists, shed light on the dynamic ...

Activating MSc glutamatergic neurons found to cause mice to eat less

December 13, 2017
(Medical Xpress)—A trio of researchers working at the State University of New York has found that artificially stimulating neurons that exist in the medial septal complex in mouse brains caused test mice to eat less. In ...

Gene mutation causes low sensitivity to pain

December 13, 2017
A UCL-led research team has identified a rare mutation that causes one family to have unusually low sensitivity to pain.

Scientists discover blood sample detection method for multiple sclerosis

December 13, 2017
A method for quickly detecting signs of multiple sclerosis has been developed by a University of Huddersfield research team.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.