Cellular network identified that 'short circuits' the antitumor effect of immunotherapies

November 13, 2017, The Wistar Institute
Cancer cells. Credit: Dr. Cecil Fox, National Cancer Institute

Researchers from The Wistar Institute discovered a novel form of crosstalk among tumor cells and other cell types in the tumor microenvironment, elucidating the mechanism of action of an immunotherapeutic strategy that inhibits tumor-associated macrophages (TAMs) and instructing a more effective use of this therapeutic approach. This work was published online in Cancer Cell.

TAMs make up a prominent immune cell population present in the . Because of their ability to promote tumor cell proliferation and invasion and inhibit antitumor immune response mediated by T cells, TAMs are considered a potential therapeutic target. Inhibition of the CSF-1 receptor (CSF-1R), which mediates the functions and survival of TAMs, has received interest as a potential strategy to eliminate these cells. However, despite being effective at depleting the TAMs in various tumor models, this strategy has failed to achieve the expected antitumor effects.

"Our findings revealed new aspects of the intricate cellular network that involves , TAMs and cancer associated fibroblasts that talk to each other via production of chemical messengers," said Dmitry I. Gabrilovich, M.D., Ph.D., Christopher M. Davis Professor and program leader of the Immunology, Microenvironment and Metastasis Program at Wistar. "We discovered an additional effect of CSF-1R inhibition that brings into play other immunosuppressive cells that sustain ."

Gabrilovich and colleagues found that, besides depleting TAMs from the tumor site, CSF-1R inhibition also resulted in the unexpected recruitment of polymorphonuclear (PMN-MDSCs), which favor tumor progression and mediate resistance to immunotherapy approaches. The presence of these cells may explain the lack of antitumor effect by CSF1R inhibition.

The researchers investigated the mechanism of PMN-MDSC recruitment to the tumor site and uncovered an intricate crosstalk that resulted in increased production of signaling proteins responsible for attracting PMN-MDSCs in response to CSF-1R inhibition. In particular, they observed higher levels of Cxcl-1, in this context produced by cancer-associated fibroblasts.

"In order to achieve a therapeutic effect, we realized that we needed to reduce the presence of both immunosuppressive populations, TAM and PMN-MDSC," added Gabrilovich.

By combining the CSF-1R inhibitor with a selective inhibitor of CXCR2, which is the receptor for Cxcl-1 and other molecules whose levels are increased as a consequence of CSF-1R inhibition, they observed significant reduction in growth. In addition, the combination of the two inhibitors together with an resulted in a dramatic antitumor effect, providing additional therapeutic benefits.

Explore further: When good immune cells turn bad

Related Stories

When good immune cells turn bad

September 21, 2017
Investigators at the Children's Center for Cancer and Blood Diseases at Children's Hospital Los Angeles have identified new findings about an immune cell - called a tumor-associated macrophage - that promotes cancer instead ...

Preclinical results support entinostat's role in targeting the tumor microenvironment

July 11, 2017
Syndax Pharmaceuticals, a clinical stage biopharmaceutical company developing entinostat and SNDX-6352 in multiple cancer indications, in collaboration with The Wistar Institute and Indiana University Melvin and Bren Simon ...

Scientists show how cancerous cells evade a potent targeted therapy

February 16, 2016
Imagine developing a drug designed to inhibit a protein that helps cancer cells proliferate and survive only to find that the drug does not perform very well in the clinic. This was the dilemma faced by scientists researching ...

Mechanism of an effective MEK inhibitor identified

November 1, 2016
Understanding the effects of certain targeted therapies on antitumor immunity is necessary to design combined interventions for more effective cancer treatment. In the past, data have shown that trametinib, an FDA-approved ...

Immune suppressor cells identified for advanced prostate cancer

December 21, 2015
Immune suppressor cells called MDSCs (myeloid-derived suppressor cells) may be important in developing treatments for advanced prostate cancer, according to a study at The University of Texas MD Anderson Cancer Center.

Recommended for you

Pregnant? Eating broccoli sprouts may reduce child's chances of breast cancer later in life

August 16, 2018
Researchers at the University of Alabama at Birmingham have found that a plant-based diet is more effective in preventing breast cancer later in life for the child if the mother consumed broccoli while pregnant. The 2018 ...

Scientists discover chemical which can kill glioblastoma cells

August 15, 2018
Aggressive brain tumour cells taken from patients self-destructed after being exposed to a chemical in laboratory tests, researchers have shown.

Three scientists share $500,000 prize for work on cancer therapy

August 15, 2018
Tumors once considered untreatable have disappeared and people previously given months to live are surviving for decades thanks to new therapies emerging from the work of three scientists chosen to receive a $500,000 medical ...

PARP inhibitor improves progression-free survival in patients with advanced breast cancers

August 15, 2018
In a randomized, Phase III trial led by researchers at The University of Texas MD Anderson Cancer Center, the PARP inhibitor talazoparib extended progression-free survival (PFS) and improved quality-of-life measures over ...

New clues into how 'trash bag of the cell' traps and seals off waste

August 15, 2018
The mechanics behind how an important process within the cell traps material before recycling it has puzzled scientists for years. But Penn State researchers have gained new insight into how this process seals off waste, ...

RUNX proteins act as regulators in DNA repair, study finds

August 15, 2018
A study by researchers from the Cancer Science Institute of Singapore (CSI Singapore) at the National University of Singapore has revealed that RUNX proteins are integral to efficient DNA repair via the Fanconi Anemia (FA) ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.