Four-in-one flu shot may mean lifelong protection against the flu

November 2, 2017, University of Nebraska-Lincoln
Eric Weaver (right), an assistant professor in the School of Biological Sciences at the University of Nebraska-Lincoln, and research team members Brianna Bullard (center) and Amy Lingel (left). Credit: Craig Chandler/University Communication/University of Nebraska-Lincoln

A vaccine combining centralized ancestral genes from four major influenza strains appears to provide broad protection against the dangerous ailment, according to new research by a team from the Nebraska Center for Virology.

Mice protected by the unconventional survived exposure to lethal doses of seven of nine widely divergent viruses. Those that received higher doses of the vaccine didn't even get sick.

In contrast, mice that received traditional flu shots or nasal sprays all sickened and died when exposed to the same viruses. The deadly pathogens were able to evade the immune responses triggered by the traditional vaccines.

While it is too soon to say the approach could be successfully used in humans, it appears to be a promising avenue toward a universal flu shot, according to lead researcher Eric Weaver, an assistant professor in the School of Biological Sciences at the University of Nebraska-Lincoln.

Weaver said the study is the first to report on whether a universal flu shot could be created by using a combination of multiple genes shared at the ancestral level by circulating today.

"The ultimate goal is to be able to vaccinate once and provide lifelong protection," Weaver said.

The Centers for Disease Control and Prevention estimates that 40 million Americans contracted influenza during the 2015-16 flu season and 970,000 people were hospitalized for the ailment. The agency estimated that vaccinations prevented about 1.9 million illnesses and 67,000 hospitalizations.

"To put this in other terms, our current programs and technologies reduce influenza infections and hospitalizations by 4.75 percent and 6.9 percent, respectively," Weaver said. "There is no doubt that there is a need for more effective vaccine technologies."

Yet because the influenza virus mutates rapidly and because people, animals and birds often carry the virus without displaying symptoms, it's been difficult to develop a vaccine with long-term effectiveness. The conventional influenza vaccine platform uses weakened or dead versions of the influenza virus to stimulate immunity against hemagglutinin (HA), a spike-shaped protein that extends from the surface of the virus and attacks cells.

According to a 2013 Clinical Microbiology Reviews article, the challenges of the conventional approach include predicting which flu strain will circulate in coming years; manufacturing and delivering safe, timely and adequate supplies; and poor responsiveness among the elderly, who often are the most vulnerable to influenza infection.

Conventional vaccines have been shown to be less than 60 percent effective when they're successfully matched to the currently circulating strain. They're far less effective when mismatched.

"An ideal influenza vaccine would be inexpensive, provide long-lasting immunity, require few immunizations and would work against all variants of the virus," Weaver said.

Some experts say it could take until 2020 or 2025 before a is available.

Pursuit of a universal influenza vaccine has been difficult. Scientists are trying various approaches to better match vaccines to multiple viral strains. Other strategies include developing vaccines aimed at the virus's protein coat, other proteins have been found to be identical in multiple flu strains, or the stalk of the hemagglutinin protein rather than its head.

These approaches have shown promising results. However, Weaver said his study is the first to report the use of multiple centralized HA genes, identified using protein sequence analysis programs, to provide the greatest level of cross-protective immunity possible.

In the article published Nov. 2 in Scientific Reports, Weaver and his colleagues Amy Lingel and Brianna L. Bullard detail an approach they say is "scalable and translatable to humans and may provide the foundation for complete and long-lasting anti-influenza immunity."

The idea arose from past research led by Dr. Bette Korber at Los Alamos National Laboratories to discover the ancestral genes for the Human Immunodeficiency Virus and to pinpoint when that virus jumped from monkeys to man. Weaver was involved with that effort while a post-doctoral researcher at Duke University School of Medicine. He and his colleagues decided to try a similar concept with the , synthesizing genes that are central to influenza's phylogenetic tree.

Instead of using weakened or deadened flu , his experiments at the Nebraska Center for Virology have used replication-defective Adenoviruses - which cause the common cold - that have been altered to carry what he calls consensus genes for H1, H2, H3 and H5 influenza strains. The vaccine is no longer capable of causing cold symptoms, but is still able to safely deliver the influenza vaccine genes.

"Our idea is that these centralized antigens can set up a foundation of immunity against influenza," he said. "Because they are centralized and represent all the strains equally, they could provide a basis for immunity against all evolved ."

Explore further: Experts say flu season could be severe this year

More information: Amy Lingel et al, Efficacy of an Adenoviral Vectored Multivalent Centralized Influenza Vaccine, Scientific Reports (2017). DOI: 10.1038/s41598-017-14891-y

Related Stories

Experts say flu season could be severe this year

September 22, 2017
If last year's active flu season and this year's severe season in the Southern Hemisphere is any indication of what flu season will look like across the country beginning this fall, then it's important to get vaccinated soon ...

Live attenuated flu vaccine not effective for children in 2015-16

August 10, 2017
(HealthDay)—During the 2015 to 2016 season, influenza vaccines reduced the risk of influenza illness, but the live attenuated vaccine was ineffective among children 2 to 17 years of age, according to a study published in ...

Study suggests potential hurdle to universal flu vaccine development may be overcome

August 15, 2012
In the quest for a universal influenza vaccine—one that elicits broadly neutralizing antibodies that can protect against most or all strains of flu virus—scientists have faced a sobering question: Does pre-existing ...

New DNA-based strategy shows promise against a range of influenza viruses

July 6, 2017
A novel, synthetic, DNA-based strategy to provide protection against a broad array of influenza viruses has been developed in preclinical models by scientists at The Wistar Institute, MedImmune (the global biologics research ...

Universal flu vaccine in the works

July 21, 2015
Each year, scientists create an influenza (flu) vaccine that protects against a few specific influenza strains that researchers predict are going to be the most common during that year. Now, a new study shows that scientists ...

UGA, Sanofi Pasteur develop new vaccine for H1N1 influenza

March 29, 2016
Researchers at the University of Georgia and Sanofi Pasteur, the vaccines division of Sanofi, announced today the development of a vaccine that protects against multiple strains of both seasonal and pandemic H1N1 influenza ...

Recommended for you

A new approach to developing a vaccine against vivax malaria

September 21, 2018
A novel study reports an innovative approach for developing a vaccine against Plasmodium vivax, the most prevalent human malaria parasite outside sub-Saharan Africa. The study led by Hernando A. del Portillo and Carmen Fernandez-Becerra, ...

Pre-clinical success for a universal flu vaccine offers hope for third generation approach

September 21, 2018
Researchers from the University of Oxford's Department of Zoology have demonstrated pre-clinical success for a universal flu vaccine in a new paper published in Nature Communications.

Researchers define possible molecular pathway for neurodegeneration in prion diseases

September 21, 2018
A new study has shed light on the mechanisms underlying the progression of prion diseases and identified a potential target for treatment.

Fighting a deadly parasite: Scientists devise a method to store Cryptosporidium, aiding vaccine research efforts

September 21, 2018
In May, just before one of the hottest summers on record, the U.S. Centers for Disease Control and Prevention issued a warning about diseases lurking in recreational water facilities like swimming pools and water playgrounds. ...

Scientists make significant discovery in the fight against drug-resistant tuberculosis

September 20, 2018
A team of scientists have identified a naturally occurring antibiotic that may help in the fight against drug-resistant Tuberculosis.

Anti-cancer drugs may hold key to overcoming antimalarial drug resistance

September 20, 2018
Scientists have found a way to boost the efficacy of the world's most powerful antimalarial drug with the help of chemotherapy medicines, according to new research published in the journal Nature Communications.

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

cgsperling
5 / 5 (1) Nov 02, 2017
The term "centralized" sounds wrong. I would think "common ancestral" would make more sense.
Nik_2213
not rated yet Nov 02, 2017
Sign me up: Bad enough having severe 'flu with mega-sweats, Richter-grade shakes and scary hallucinations, but secondary infections and debilitation can ruin the entire Winter...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.