Odors that carry social cues seem to affect volunteers on the autism spectrum differently

November 27, 2017, Weizmann Institute of Science
Skydivers provided the smell of fear for investigating how autistic men react to odors. Credit: Weizmann Institute of Science

Autism typically involves the inability to read social cues. We most often associate this with visual difficulty in interpreting facial expression, but new research at the Weizmann Institute of Science suggests that the sense of smell may also play a central role in autism. As reported today in Nature Neuroscience, Weizmann Institute of Science researchers show that people on the autism spectrum have different - and even opposite - reactions to odors produced by the human body. These odors are ones that we are unaware of smelling, but which are, nonetheless, a part of the nonverbal communication that takes place between people, and which have been shown to affect our moods and behavior. Their findings may provide a unique window on autism, including, possibly, on the underlying developmental malfunctions in the disorder.

Researchers in the lab of Prof. Noam Sobel in the Institute's Neurobiology Department investigate, among other things, the smells that announce such emotions as happiness, fear or aggression to others. Although this sense is not our primary sense, as it is in many other mammals, we still subliminally read and react to certain odors. For example "smelling fear," even if we cannot consciously detect its , is something we may do without thinking. Since this is a form of social communication, Sobel and members of his lab wondered whether it might be disrupted in a social disorder like .

To conduct their experiments, Sobel and lab members Yaara Endevelt-Shapira and Ofer Perl, together with other members of his lab, devised a series of experiments with a group of participants on the high functioning end of the autism spectrum who volunteered for the study. To begin with, the researchers tested the ability of both autistic and volunteers to identify smells that can be consciously detected, including human smells like sweat. There was no significant difference between the groups at this stage, meaning the sense of smell in the autistic participants was not significantly different from that of controls.

Two groups were then exposed to either to the "smell of fear" or to a control odor. The smell of fear was sweat collected from people taking skydiving classes, and control odor was sweat from the same people, only this time it had been collected when they were just exercising—without feeling fear.

This is where differences emerged: Although neither group reported detecting dissimilarities between the two smells, their bodies reacted to each in a different way. In the , smelling the fear-induced sweat produced measurable increases in the fear response, for example in skin conductivity, while the everyday sweat did not. In the autistic men, fear-induced sweat lowered their fear responses, while the odor of "calm sweat" did the opposite: It raised their measurable anxiety levels.

Next, the group created talking robotic mannequins that emitted different odors through their nostrils. These mannequins gave the volunteers, who were unaware of the olfactory aspect of the experiment, different tasks to conduct. Using mannequins enabled the researchers to have complete control over the - odor-based or other - that the subjects received. The tasks were designed to evaluate the level of trust that the volunteers placed in the mannequins - and here, too, the behavior of autistic volunteers was the opposite of the control group: They displayed more trust in the mannequin that emitted the -induced odor and less in the one that smelled "calmer."

In continuing experiments, the researchers asked whether other subliminal "social odors" have a different impact in autism than in control groups. In one, the volunteers were exposed to sudden loud noises during their sessions while at the same time they were also exposed to a potentially calming component of body-odor named hexadecanal. Another automatic - blinking - was recorded using electrodes above the muscles of the eye. Indeed, the blink response in the control group was weaker when they were exposed to hexadecanal, while for those in the autistic group this response was stronger with hexadecanal.

In other words, the autistic volunteers in the experiment did not display an inability to read the olfactory social cues in smell, but rather they misread them. Sobel and his group think that this unconscious difference may point to a deeper connection between our sense of smell and early development. Research in recent years has turned up receptors like those in our nasal passages in all sorts of other places in our bodies - from our brains to our uteri. It has been suggested that these play a role in development, among other things. In other words, it is possible that the sensing of subtle chemical signals may go awry at crucial stages in the brain's development in autism. "We are still speculating, at this point," says Sobel, "but we are hoping that further research in our lab and others will clarify both the function of these unconscious olfactory social cues and their roots in such social disorders as autism."

Explore further: Early odor exposure enhances response of smell cells

More information: Yaara Endevelt-Shapira et al. Altered responses to social chemosignals in autism spectrum disorder, Nature Neuroscience (2017). DOI: 10.1038/s41593-017-0024-x

Related Stories

Early odor exposure enhances response of smell cells

September 25, 2017
Mice exposed to scents of mint or fresh cut grass before and shortly after birth show increased responses in a specific population of odor-processing neurons to a variety of odors, according to new research published in eNeuro. ...

Can autism be measured in a sniff?

July 2, 2015
Imagine the way you might smell a rose. You'd take a nice big sniff to breathe in the sweet but subtle floral scent. Upon walking into a public restroom, you'd likely do just the opposite—abruptly limiting the flow of air ...

Mammal brains identify type of scent faster than once thought

November 14, 2017
It takes less than one-tenth of a second—a fraction of the time previously thought—for the sense of smell to distinguish between one odor and another, new experiments in mice show.

Wake up and smell the sweat

November 21, 2007
Some people are oblivious to the odor in the locker room after a game, while others wrinkle their noses at the slightest whiff of sweat. Research by Prof. Doron Lancet and research student Idan Menashe of the Molecular Genetics ...

Behavioral changes seen after sleep learning: Volunteers smoked less after a night of olfactory conditioning

November 11, 2014
New Weizmann Institute research may bring the idea of sleep learning one step closer to reality. The research, which appeared today in The Journal of Neuroscience, suggests that certain kinds of conditioning applied during ...

Psychologist explores perception of fear in human sweat

March 6, 2009
When threatened, many animals release chemicals as a warning signal to members of their own species, who in turn react to the signals and take action. Research by Rice University psychologist Denise Chen suggests a similar ...

Recommended for you

Earlier treatment could help reverse autistic-like behavior in tuberous sclerosis

October 9, 2018
New research on autism has found, in a mouse model, that drug treatment at a young age can reverse social impairments. But the same intervention was not effective at an older age.

Scientists pinpoint pathway that impacts features of autism

October 8, 2018
A team of scientists at Florida Atlantic University has uncovered a brain-signaling pathway that can be pharmacologically manipulated in genetically engineered mice to reverse an autism-related pathway. Using an investigational ...

Scientists reverse a sensory impairment in mice with autism

September 25, 2018
Using a genetic technique that allows certain neurons in the brain to be switched on or off, UCLA scientists reversed a sensory impairment in mice with symptoms of autism, enabling them to learn a sensory task as quickly ...

Latest research hints at predicting autism risk for pregnant mothers

September 21, 2018
Researchers at Rensselaer Polytechnic Institute—led by Juergen Hahn, professor and head of biomedical engineering—are continuing to make remarkable progress with their research focused on autism spectrum disorder (ASD). ...

Scientists reveal drumming helps schoolchildren diagnosed with autism

September 14, 2018
Drumming for 60 minutes a week can benefit children diagnosed with autism and supports learning at school, according to a new scientific study.

Overlapping copy number variations underlie autism and schizophrenia in Japanese patients

September 11, 2018
Common genetic variants may underlie autism spectrum disorder and schizophrenia across human populations, according to a study appearing September 11th in the journal Cell Reports. In line with previous studies in Caucasians, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.