Surprising roles for muscle in tissue regeneration, study finds

November 22, 2017, Whitehead Institute for Biomedical Research
Skeletal muscle tissue. Credit: University of Michigan Medical School

A team of researchers at Whitehead has illuminated an important role for different subtypes of muscle cells in orchestrating the process of tissue regeneration. In a paper published in the November 22 issue of Nature, they reveal that a subtype of muscle fibers in flatworms is required for triggering the activity of genes that initiate the regeneration program. Notably, in the absence of these muscles, regeneration fails to proceed. Another type of muscle, they report, is required for giving regenerated tissue the proper pattern—for example, forming one head instead of two.

"One of the central mysteries in organ and is, how do animals initiate all of the cellular and molecular steps that lead to regeneration?" says senior author Peter Reddien, a member of Whitehead Institute, professor of biology at MIT, and investigator with the Howard Hughes Medical Institute. "We've helped answer this question by revealing a surprising molecular program that operates within a subgroup of that helps establish the molecular information required for proper tissue regeneration after injury."

For more than a decade, Reddien and his laboratory have studied the biological mechanisms that underlie regeneration in a tiny flatworm called planarians. These worms possess some impressive regenerative capabilities: When sliced in two, each piece of the worm can regrow the body parts needed to form two complete organisms. In previous studies, Reddien's team identified a set of always-on genes, known as position control genes (or PCGs), that provide with region-specific instructions—like a set of GPS coordinates—that tell cells where they are in the body, and thus, what body part to regenerate. Interestingly, PGCs are active in planarian muscle cells, suggesting muscle may play a major in the .

"This discovery raised a lot of questions about how muscle participates in this process," Reddien says.

In planarians, there are a handful of muscle cell types. For example, if you imagine the worms as simple cylindrical tubes, there are longitudinal muscle fibers, which run head-to-tail along the tubes' long axis. There are also circular fibers, which are perpendicular to the longitudinal fibers and hug the tubes' outer circumference.

To assess the roles of these different muscle cell types in regeneration, first author Lucila Scimone and her colleagues needed a method to selectively remove them. myoD is a gene found specifically in the longitudinal fibers; when inhibited, those fibers fail to form. Similarly, nkx1-1 marks the circular fibers, and when its function is reduced, they do not develop. Using these genes as molecular scalpels, Scimone and her co-authors could test the effects of ablating these distinct muscle groups on regeneration.

Surprisingly, when the longitudinal fibers were removed, the results were dramatic: the worms can live quite normally, but when injured—the head removed, for example—they cannot regenerate the missing parts.

"This is an amazing result—it tells us that these longitudinal fibers are essential for orchestrating the regeneration program from the very beginning," says Scimone, who is a scientist in Reddien's lab.

As the researchers dug deeper into the finding, they learned that the functions of two critical genes are disrupted when longitudinal fibers are missing. These genes, called notum and follistatin, are known for their fundamental roles in regeneration, controlling head-versus-tail decisions and sustained cell proliferation, respectively, following tissue injury.

In addition to this essential role for longitudinal fibers, the research team also uncovered a key role for circular fibers. When these muscles are missing, planarians are able to regenerate missing body parts, but what regrows is abnormally patterned—for example, two heads are regenerated within a single outgrowth, instead of one.

These results underscore an important and previously unappreciated role for muscle—widely known for its contractile properties—in instructing the tissue . The Whitehead researchers will continue to probe the role of different muscle cell types in planarian and also explore whether other animals with regenerative capabilities possess a similar -localized program for conferring positional information.

"It's hard to understand what limits humans' abilities to regenerate and repair wounds without first knowing what mechanisms are enabling some animals, like planarians, to do it so amazingly well," Reddien says.

Explore further: In regenerating planarians, muscle cells provide more than heavy lifting

More information: M. Lucila Scimone et al, Orthogonal muscle fibres have different instructive roles in planarian regeneration, Nature (2017). DOI: 10.1038/nature24660

Related Stories

In regenerating planarians, muscle cells provide more than heavy lifting

August 15, 2013
By studying the planarian flatworm, a master of regenerating missing tissue and repairing wounds, Whitehead Institute Member Peter Reddien and his lab have identified an unexpected source of position instruction: the muscle ...

Ancient gene gives planarians a heads-up in regeneration

May 12, 2011
A seldom-studied gene known as notum plays a key role in the planarian's regeneration decision-making process, according to Whitehead Institute scientists. Protein from this gene determines whether a head or tail will regrow ...

Heads or tails? Worm with abundant ability to regenerate relies on ancient gene to make decisions

May 17, 2011
(PhysOrg.com) -- Most people don’t think worms are cool. But the tiny flatworm that Northwestern University scientist Christian Petersen studies can do something very cool indeed: it can regenerate itself from nearly ...

Human stem cells could one day be regulated to replace aged, damaged, and missing tissues

January 27, 2015
When a salamander loses a tail, it grows a new one. What's the difference, MIT biologist Peter Reddien PhD '02 wondered, between a wound that severs a salamander's tail and one that severs a human spinal cord?

Recommended for you

Age-related increase in estrogen may cause common men's hernia

October 16, 2018
An age-related increase in estrogen may be the culprit behind inguinal hernias, a condition common among elderly men that often requires corrective surgery, according to a Northwestern Medicine study was published Oct. 15 ...

New findings cast light on lymphatic system, key player in human health

October 16, 2018
Scientists at the Oklahoma Medical Research Foundation have broken new ground in understanding how the lymphatic system works, potentially opening the door for future therapies.

New model suggests cuffless, non-invasive blood pressure monitoring possible using pulse waves

October 16, 2018
A large team of researchers from several institutions in China and the U.S. has developed a model that suggests it should be possible to create a cuffless, non-invasive blood pressure monitor based on measuring pulse waves. ...

Discovery of inner ear function may improve diagnosis of hearing impairment

October 15, 2018
Results from a research study published in Nature Communications show how the inner ear processes speech, something that has until now been unknown. The authors of the report include researchers from Linköping University, ...

Team's study reveals hidden lives of medical biomarkers

October 12, 2018
What do medical biomarkers do on evenings and weekends, when they might be considered off the clock?

Widespread errors in 'proofreading' cause inherited blindness

October 12, 2018
Mistakes in "proofreading" the genetic code of retinal cells is the cause of a form of inherited blindness, retinitis pigmentosa (RP) caused by mutations in splicing factors.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.