Tracking down genetic influences on brain disorders

November 27, 2017, University of Basel

New findings will help to identify the genetic causes of brain disorders: researchers at the Universities of Basel, Bonn and Cologne have presented a systematic catalog of specific variable locations in the genome that influence gene activity in the human hippocampus, as they report in the journal Nature Communications.

Individual differences in gene regulation contribute to the development of numerous multifactorial . Researchers are therefore attempting to clarify the influence of genetic variants (single-nucleotide polymorphisms, or SNPs) on gene expression and on the epigenetic modification of regulatory sections of the genome (DNA methylation). The German–Swiss team has now studied the genetic determinants of gene expression, as well as the process of DNA methylation in the human hippocampus.

Three million genomic locations analyzed

The researchers have presented an extensive catalog of variable locations in the genome – that is, of SNPs – that affect the activity of in the human hippocampus. Specifically, they have analyzed the influence of more than three million SNPs, spread throughout the genome, on activity in nearby genes and the methylation of adjacent DNA sections.

The special thing about their work is that the researchers used freshly frozen hippocampus tissue obtained during surgery on 110 treatment-resistant epilepsy patients. They extracted DNA and RNA from the hippocampus tissue and, for all of the obtained samples, used microchips to determine several hundred thousand SNPs, as well as the degree of methylation at several hundred thousand locations (known as CpG dinucleotides) in the genome. Among other analyses, they measured the gene expression of over 15,000 genes using RNA microchips.

Development of schizophrenia

The researchers also demonstrated the preferred areas in which variably methylated CpG dinucleotides appear in the genome, and they were able to assign these to specific regulatory elements, revealing a link to : a significant proportion of the identified SNPs that individually influence DNA methylation and in the hippocampus also contribute to the development of schizophrenia. This underlines the potentially significant role played by SNPs with a regulatory effect in the development of brain disorders.

The study's findings will make it considerably easier to interpret evidence of genetic associations with brain disorders in the future. Of the SNPs involved in the of brain disorders, many of those identified in recent years are located in the non-coding part of the . Their functional effect in cells is therefore largely unclear.

Explore further: Changes in RNA splicing: a new mechanism for genetic risk in schizophrenia

More information: Herbert Schulz et al. Genome-wide mapping of genetic determinants influencing DNA methylation and gene expression in human hippocampus, Nature Communications (2017). DOI: 10.1038/s41467-017-01818-4

Related Stories

Changes in RNA splicing: a new mechanism for genetic risk in schizophrenia

February 27, 2017
New research has identified sections of DNA associated with altered regulation of gene expression underlying schizophrenia. The implicated loci contribute to schizophrenia risk by affecting alternative splicing, part of the ...

Scientists use supercomputer to search for "memory molecules"

October 23, 2017
Until now, searching for genes related to memory capacity has been comparable to seeking out the proverbial "needle in a haystack." Scientists at the University of Basel made use of the CSCS supercomputer Piz Daint to discover ...

Three new lung cancer genetic biomarkers are identified in Dartmouth study

October 26, 2017
Both environmental and genetic risk factors contribute to development of lung cancer. Tobacco smoking is the most well-known environmental risk factor associated with lung cancer. A Dartmouth research team led by Yafang Li, ...

Blood-based epigenetic research may hold clues to autism biology, study suggests

October 24, 2017
Using data from blood and brain tissue, a team led by researchers at Johns Hopkins Bloomberg School of Public Health found that they could gain insights into mechanisms that might help explain autism by analyzing the interplay ...

Potential new asthma genes ID'd in genome-wide study

July 28, 2016
(HealthDay)—Potential new asthma genes have been identified in a genome-wide association study (GWAS) combined with subsequent lung expression quantitative trait loci (eQTL) analysis, according to research published online ...

The 16 genetic markers that can cut a life story short

July 27, 2017
The answer to how long each of us will live is partly encoded in our genome. Researchers have identified 16 genetic markers associated with a decreased lifespan, including 14 new to science. This is the largest set of markers ...

Recommended for you

Overcoming a major barrier to developing liquid biopsies

July 16, 2018
The idea of testing blood or urine to find markers that help diagnose or treat disease holds great promise. But as technology has improved to allow researchers to examine tiny fragments of RNA, one major problem has led to ...

Genetic marker for drug risk in multiple sclerosis offers path toward precision medicine

July 16, 2018
A team of researchers has uncovered a specific gene variant associated with an adverse drug reaction resulting in liver injury in a people with multiple sclerosis (MS). It is the first time researchers have been able to establish ...

Researchers suggest new treatment for rare inherited cancers

July 16, 2018
Studying two rare inherited cancer syndromes, Yale Cancer Center (YCC) scientists have found the cancers are driven by a breakdown in how cells repair their DNA. The discovery, published today in Nature Genetics, suggests ...

AI accurately predicts effects of genetic mutations in biological dark matter

July 16, 2018
A new machine learning framework, dubbed ExPecto, can predict the effects of genetic mutations in the so-called "dark matter" regions of the human genome. ExPecto pinpoints how specific mutations can disrupt the way genes ...

Researchers discover gene that controls bone-to-fat ratio in bone marrow

July 12, 2018
In an unexpected discovery, UCLA researchers have found that a gene previously known to control human metabolism also controls the equilibrium of bone and fat in bone marrow as well as how an adult stem cell expresses its ...

Massive genome havoc in breast cancer is revealed

July 12, 2018
In cancer cells, genetic errors wreak havoc. Misspelled genes, as well as structural variations—larger-scale rearrangements of DNA that can encompass large chunks of chromosomes—disturb carefully balanced mechanisms that ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.