G-quadruplex regulates breast cancer-associated gene

gene
Credit: CC0 Public Domain

For breast cancer, carrying protein CD44s, instead of CD44v, has a survival advantage. Researchers have now discovered a mechanism by which cells can regulate switching between the two proteins, opening options for the development of novel therapeutic strategies to control cancer growth in the future. The study appears in the journal Genes & Development.

"In previous studies, we found that switching from CD44v to CD44s is critical for progression and metastasis," said corresponding author Dr. Chonghui Cheng, associate professor of molecular and human genetics and of molecular and cellular biology at Baylor College of Medicine. "Here, we studied how cells regulate the switching between the two proteins at the molecular level."

To build CD44 proteins, the genetic information on the DNA is transcribed into RNA and then translated from RNA into a protein. Cells have the choice of translating the information into protein CD44v or CD44s. Breast cells that translate the RNA into protein CD44s have a . The mechanism that mediates which protein is produced is called .

"How cancer cells regulate alternative splicing is becoming a fascinating subject of research," said Cheng, who also is at the Lester and Sue Smith Breast Center, part of the National Cancer Institute-designated Dan L Duncan Comprehensive Cancer Center at Baylor College of Medicine. "The consensus is that decisions on which should be made rely on specific linear RNA sequences called G-tracts. But emerging evidence suggests that these decisions may also depend on the three-dimensional structure of folded linear RNA G-tracts. One example of these three-dimensional structures is G-quadruplex."

G-quadruplex largely regulates switching between CD44v and CD44s contribute

Working with human in culture, the researchers asked whether and how G-quadruplex was important for switching between CD44v and CD44s.

"We carried out very defined molecular and biochemical analyses and provided extensive data that show that G-quadruplex largely regulates the switching between CD44v and CD44s," said co-first author Dr. Jing Zhang, postdoctoral associate in the Cheng lab, whose key contributions were decisive in accomplishing this work. "G-quadruplex structures also are associated with degenerative diseases and aging. If we understand G-quadruplex better, we could be able to provide new insights into how to treat and neurodegenerative diseases and better understand the aging process."

"What has been missing is an appreciation for the role played by folded linear RNA structures such as G-quadruplex in alternative splicing," Cheng said. "If we only look at one-dimensional, linear G-tracts, we might not be able to figure out how splicing is regulated because the key element could be residing within the three-dimensional structure of G-quadruplex, which is the case in this study."


Explore further

How CD44s gives brain cancer a survival advantage

More information: Huilin Huang et al, RNA G-quadruplex secondary structure promotes alternative splicing via the RNA-binding protein hnRNPF, Genes & Development (2017). DOI: 10.1101/gad.305862.117
Provided by Baylor College of Medicine
Citation: G-quadruplex regulates breast cancer-associated gene (2017, December 21) retrieved 23 January 2019 from https://medicalxpress.com/news/2017-12-g-quadruplex-breast-cancer-associated-gene.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
18 shares

Feedback to editors

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more