The mysterious case of the boy missing most of his visual cortex who can see anyway

December 8, 2017 by Bob Yirka, Medical Xpress report
Credit: public domain

(Medical Xpress)—A team of researchers with Monash University recently gave a presentation at a neuroscience conference in Australia outlining their study of the brain of a seven-year-old boy who was missing most of his visual cortex but could still see—the first such case ever known.

The boy, the researchers told the audience, suffered major damage to his visual cortex as a result of medium-chain acyl-Co-A dehydrogenase deficiency at just two weeks old—a rare condition that results in severe damage to due to an inability to convert some types of fats into energy. That meant the boy, who the researchers referred to as B.I., wound up without most of his visual cortex, a condition that for most people would result in cortical blindness. Cortical blindness is an odd condition in which the can still receive visual input, but cannot process what is seen, leaving the person with the sensation of sight without being able to actually see. But oddly enough, B.I. can see almost as well as any other boy his age.

B.I. caught the attention of the team at Monash due to his medical history—intrigued, they sought to test the boy and his vision, and find out why he could see despite his brain injury.

In testing B.I.'s vision, the researchers found that he was somewhat near-sighted but was otherwise fine, except for the occasional lapse when faced with false-colored objects such as a blue banana. He could play soccer, for example, and video games, and make out the difference in emotions on a person's face.

To find out why the boy could still see, the researchers observed him in an MRI machine and watched what happened as he processed images. By focusing on the middle temporal visual area, the found an enlarged visual pathway of neural fibers that ran through two areas on the back of the brain where the visual resides. One of the areas called the pulvinar is normally involved in managing sensory signals, the other, called the middle temporal area, is normally involved in detecting motion. In B.I.'s case, the pathway had grown larger than normal to allow it to do the work that his was supposed to do, allowing him to see—a form of neuroplasticity.

Explore further: Blind people have brain map for 'visual' observations too

Related Stories

Blind people have brain map for 'visual' observations too

May 17, 2017
Is what you're looking at an object, a face, or a tree? When processing visual input, our brain uses different areas to recognize faces, body parts, scenes, and objects. Scientists at KU Leuven (University of Leuven), Belgium, ...

Deep sleep critical for visual learning

October 4, 2017
Remember those "Magic Eye" posters from the 1990s? You let your eyes relax, and out of the tessellating structures, a 3-D image of a dolphin or a yin yang or a shark would emerge.

Thalamus found to add contextual information to visual signals

December 23, 2015
The thalamus not only relays visual signals from the eye to the visual cortex as previously thought, but also conveys additional, contextual information. Integrating these different signals is essential to understand and ...

An innovative model for the study of vision

April 11, 2017
A new study shows for the first time that the progressive processing of the visual signal underlying human object recognition is similarly implemented in the rat brain, thus extending the range of experimental techniques, ...

Vision keeps maturing until mid-life: Brain research recasts timeline for visual cortex development

May 29, 2017
The visual cortex, the human brain's vision-processing centre that was previously thought to mature and stabilize in the first few years of life, actually continues to develop until sometime in the late 30s or early 40s, ...

Seeing Beyond the Visual Cortex

April 3, 2012
(Medical Xpress) -- It's a chilling thought--losing the sense of sight because of severe injury or damage to the brain's visual cortex. But, is it possible to train a damaged or injured brain to "see" again after such a catastrophic ...

Recommended for you

A peek into the interplay between sleep and wakefulness

July 20, 2018
Sleep is an autonomic process and is not always under our direct, voluntary control. Awake or asleep, we are basically under the regulation of two biological processes: sleep homeostasis, commonly known as 'sleep pressure', ...

Paralyzed mice with spinal cord injury made to walk again

July 19, 2018
Most people with spinal cord injury are paralyzed from the injury site down, even when the cord isn't completely severed. Why don't the spared portions of the spinal cord keep working? Researchers at Boston Children's Hospital ...

Neural inflammation plays critical role in stress-induced depression

July 19, 2018
A group of Japanese researchers has discovered that neural inflammation caused by the innate immune system plays an unexpectedly important role in stress-induced depression. This insight could potentially lead to the development ...

Scientists uncover the role of a protein in production and survival of myelin-forming cells

July 19, 2018
The nervous system is a complex organ that relies on a variety of biological players to ensure daily function of the human body. Myelin—a membrane produced by specialized glial cells—plays a critical role in protecting ...

Understanding the neuroscience of binge drinking

July 19, 2018
A new study from researchers at Columbia University Irving Medical Center found that binge drinking impairs working memory in the adolescent brain. The study, in mice, explains why teenagers who binge drink are 15 times more ...

Neurons can carry more than one signal at a time

July 18, 2018
Back in the early days of telecommunications, engineers devised a clever way to send multiple telephone calls through a single wire at the same time. Called time-division multiplexing, this technique rapidly switches between ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

betterexists
not rated yet Dec 09, 2017
More info. for Researchers in Neurology; Also, try to find smart animals or train them to be smart...then, little by little transfer their brain to a different one of the same species ! Brain related Blinded mice should be transplanted with that of Normal mice. I found a New york Times article a few days ago in which animal-brain- transplant was successfully done in early 1980's. AND Transplant Locomotion related Brain Region to different Species that have different style of Movement !

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.