Protein associated with ALS points to possible targets for therapeutic intervention

December 1, 2017, University of Alberta
Michael Woodside, University of Alberta biophysicist, and his team may have found possible targets for therapeutic interventions in the fight against Lou Gehrig's disease. Credit: John Ulan

Scientists at the University of Alberta may have found possible targets for therapeutic interventions in the fight against Lou Gehrig's disease.

Biophysicist Michael Woodside and his research team conducted the first single-molecule study of folding in the superoxide dismutase-1 (SOD1), an antioxidant whose misfolding is linked to the neurodegenerative disease ALS. They found that it has much more complex folding than previously thought.

The results suggest an explanation for the protein's propensity to misfold similarly to proteins in .

"When we pulled the protein apart, we were expecting its structure to come apart all at once based on what was previously known, but what we found instead was a mess," said Woodside, professor in the U of A's Department of Physics. "But clearer patterns started to emerge after unfolding and refolding it several thousand times. You get a lot more detail working at this single-molecule scale, and it allows us to start piecing the whole picture together."

Best known for his work on prion diseases such as mad cow and the associated human form of Creutzfeldt-Jakob, Woodside said he and his colleagues were drawn to the problem based on the protein's prion-like characteristics, noting that the behaviour in the misfolding is reminiscent of .

Woodside used similar techniques from his previous work to better understand SOD1, using laser tweezers to measure the unfolding and refolding of single molecules.

He explained that there was a stable core of the protein that was the last to unfold and the first to refold.

"What we are finding is that when it folds up to an incorrect state, it actually always starts off making the same stable core that you find when it goes into the correct state. It just takes a wrong turn partway down that pathway," he noted.

It was in the misfolding around this core where he and his team were trying to pinpoint the wrong turns of the folding pathways of the protein. They identified several types of misfolded pathways and resolved numerous previously undetected intermediate states en route to a more complete map.

"When you don't understand why something is misfolding, it becomes difficult to target therapeutic treatments. So understanding where things are going wrong helps the targeting process become more rational rather than leaning on random screening," said Woodside.

Woodside said the next challenges are to scale up the findings, connecting to an entire cell and then finally to a full organism. He is now working with a leading ALS clinician out of the University of British Columbia to advance future work, focusing on how mutations that lead to inherited forms of ALS can cause misfolding to spread from molecule to molecule and cell to cell.

"Partially native intermediates mediate misfolding of SOD1 in single-molecule folding trajectories" was published in the Dec. 1 issue of Nature Communications.

Explore further: Researchers describe copper-induced misfolding of prion proteins

More information: Supratik Sen Mojumdar et al, Partially native intermediates mediate misfolding of SOD1 in single-molecule folding trajectories, Nature Communications (2017). DOI: 10.1038/s41467-017-01996-1

Related Stories

Researchers describe copper-induced misfolding of prion proteins

July 1, 2016
Iowa State University researchers have described with single-molecule precision how copper ions cause prion proteins to misfold and seed the misfolding and clumping of nearby prion proteins.

Scientists identify most lethal known species of prion protein

February 9, 2012
Scientists from the Florida campus of The Scripps Research Institute have identified a single prion protein that causes neuronal death similar to that seen in "mad cow" disease, but is at least 10 times more lethal than larger ...

Discovery may offer hope to Parkinson's disease patients

May 22, 2017
The finding of a common protein abnormality in these degenerative diseases supports a hypothesis among experts that abnormal deposition of proteins in many neurodegenerative disorders reflects an early change in these proteins.

Recommended for you

Calorie restriction trial in humans suggests benefits for age-related disease

March 22, 2018
One of the first studies to explore the effects of calorie restriction on humans showed that cutting caloric intake by 15% for 2 years slowed aging and metabolism and protected against age-related disease. The study, which ...

Boosting enzyme may help improve blood flow, fitness in elderly

March 22, 2018
As people age, their blood-vessel density and blood flow decrease, which is why it's harder to maintain muscle mass after 40 and endurance in the later decades, even with exercise. This vascular decline is also one of the ...

Scientists pinpoint cause of vascular aging in mice

March 22, 2018
We are as old as our arteries, the adage goes, so could reversing the aging of blood vessels hold the key to restoring youthful vitality?

Sulfur amino acid restriction diet triggers new blood vessel formation in mice

March 22, 2018
Putting mice on a diet containing low amounts of the essential amino acid methionine triggered the formation of new blood vessels in skeletal muscle, according to a new study from Harvard T.H. Chan School of Public Health. ...

Gradual release of immunotherapy at site of tumor surgery prevents tumors from returning

March 21, 2018
A new study by Dana-Farber Cancer Institute scientists suggests it may be possible to prevent tumors from recurring and to eradicate metastatic growths by implanting a gel containing immunotherapy during surgical removal ...

Immune cells in the retina can spontaneously regenerate

March 21, 2018
Immune cells called microglia can completely repopulate themselves in the retina after being nearly eliminated, according to a new study in mice from scientists at the National Eye Institute (NEI). The cells also re-establish ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.