New approach attacks 'undruggable' cancers from the outside in

January 23, 2018, University of California, San Francisco
Credit: CC0 Public Domain

Cancer researchers have made great strides in developing targeted therapies that treat the specific genetic mutations underlying a patient's cancer. However, many of the most common cancer-causing genes are so central to cellular function throughout the body that they are essentially 'undruggable'. Now, researchers at UC San Francisco have found a way to attack one of the most common drivers of lung, colorectal, and pancreatic cancer by targeting the proteins it produces on the outside of the cell.

Their study, published January 23, 2018 in the journal eLife, reveals that -causing mutations in RAS, a family of genes found in all animal cell types, creates tell-tale changes in a community of proteins on the surface of cancer . The researchers show that attacking these cells from the outside in - by targeting the altered proteins with antibodies - could be a viable therapeutic approach for previously undruggable cancer targets.

RAS serves as a major communication hub that relays information from outside the cell to as many as 12 different signaling pathways inside the cell, including the MAPK and PI3K pathways, which then collectively induce changes to our cells. Nearly one third of all human malignancies are caused by one of the three RAS isoforms (KRAS, NRAS and HRAS) being activated by a mutation, making RAS an important focus in cancer research.

"While there are intense efforts to target signaling pathways within the cell, very little is understood about how RAS signaling can regulate the set of proteins expressed on the surface of a cell at any time," said senior author James Wells, PhD, professor of pharmaceutical chemistry and member of the Helen Diller Family Comprehensive Cancer Center at UCSF. "More studies in this area would help us understand how mutations in RAS signaling drive malignancy, and may point to novel targets for antibody and cellular-therapy-based treatment in RAS-driven cancers."

Wells, who holds the Harry Wm. and Diana V. Hind Distinguished Professorship in Pharmaceutical Sciences at UCSF, began looking into the influence of RAS signaling on the proteins present on the surface of cells. Using an analytical technique called mass spectrometry, his team studied a particular cell line called MCF10A and discovered a signature of surface proteins that change when cells are transformed with a KRAS mutation called KRAS G12V, and driven by MAPK pathway signaling.

Next, the team generated a toolkit of antibodies that target seven of these RAS-induced proteins. Applying the antibodies to their targets revealed that five of the proteins are broadly distributed on cell lines harboring KRAS mutations. A parallel study using a cell-surface CRISPRi screen - which uses CRISPR-Cas9 technology to temporarily switch off specific genes in order to investigate their function - later found that signaling proteins involved in integrin and Wnt signaling are critical to RAS-transformed cells.

Most strikingly, the researchers observed that one , CDCP1, was a common target in both studies. CDCP1 has previously been identified as a driver of cancer-cell growth, metastasis and tumor progression. The team then showed that antibodies against CDCP1 could be used to deliver cytotoxic or immunotherapeutic compounds to Ras-mutant cancer cells in the lab, and as a reporter of RAS signaling in a mouse xenograft model of .

"While our results provide a large number of interesting proteins to follow up, we decided to focus on targeting CDCP1," said study first author Alexander Martinko, an NSF Graduate Research Fellow at UCSF. "Our antibodies did not appear to inhibit CDCP1, but we were motivated by the fact that it was over-expressed in many RAS-driven cell lines. This suggests that it could be an attractive for an antibody-drug-conjugate treatment."

"Overall, we've presented a novel technological pipeline for the discovery and application of antibodies to regulated by cancer-causing signaling pathways," Wells said. "Ultimately, we hope this pipeline can be used to attack undruggable targets, including RAS, from the outside."

Explore further: Hedgehog signaling proteins keep cancer stem cells alive

More information: Alexander John Martinko et al, Targeting RAS driven human cancer cells with antibodies to upregulated and essential cell-surface proteins, eLife (2018). DOI: 10.7554/eLife.31098 , doi.org/10.7554/eLife.31098

Related Stories

Hedgehog signaling proteins keep cancer stem cells alive

January 22, 2018
Researchers from Charité - Universitätsmedizin Berlin have discovered that the survival of cancer stem cells is dependent on the Hedgehog signaling pathway. Targeting this pathway had previously shown no effect on the growth ...

New understanding of why cancer cells move

December 27, 2017
A University of Hawai'i Cancer Center researcher has identified how some cancer cells are made to move during metastasis. The research provides a better understanding of how cancer spreads and may create new opportunities ...

New strategy for multiple myeloma immunotherapy

November 27, 2017
In recent decades monoclonal antibody-based treatment of cancer has been established as one of the most successful therapeutic strategies for both solid tumors and blood cancers. Monoclonal antibodies (mAb), as the name implies, ...

Researchers develop new strategy to target KRAS mutant cancer

September 14, 2017
Although KRAS is one of the major oncogenes associated with aggressive cancers, drugs designed to block KRAS function have not been able to halt cancer progression in a clinical setting. Until now, KRAS has remained infamously ...

Editing genes one by one throughout colorectal cancer cell genome uncovers new drug target

September 27, 2017
Cancers driven by mutations in the KRAS gene are among the most deadly. For decades, researchers have tried unsuccessfully to directly target mutant KRAS proteins as a means to treat tumors. Instead of targeting mutant KRAS ...

Leukemia inhibitory factor may be a promising target against pancreatic cancer

June 19, 2012
Pancreatic cancer is one of the deadliest forms of cancer, defying most treatments. Its ability to evade therapy may be attributable to the presence of cancer stem cells, a subset of cancer cells present in pancreatic tumors ...

Recommended for you

Student develops microfluidics device to help scientists identify early genetic markers of cancer

October 16, 2018
As anyone who has played "Where's Waldo" knows, searching for a single item in a landscape filled with a mélange of characters and objects can be a challenge. Chrissy O'Keefe, a Ph.D. student in the Department of Biomedical ...

Technique to 'listen' to a patient's brain during tumour surgery

October 16, 2018
Surgeons could soon eavesdrop on a patient's brain activity during surgery to remove their brain tumour, helping improve the accuracy of the operation and reduce the risk of impairing brain function.

Researchers elucidate roles of TP63 and SOX2 in squamous cell cancer progression

October 16, 2018
Squamous cell carcinomas (SCCs) are aggressive malignancies arising from the squamous epithelium of various organs, such as the esophagus, head and neck, lungs, and skin. Previous studies have demonstrated that two master ...

Function of neutrophils during tumor progression unraveled

October 15, 2018
Researchers at The Wistar Institute have characterized the function of neutrophils, a type of white blood cells, during early stages of tumor progression, showing that they migrate from the bone marrow to distant sites and ...

Delving where few others have gone, leukemia researchers open new path

October 15, 2018
A Wilmot Cancer Institute study uncovers how a single gene could be at fault in acute myeloid leukemia (AML), one of the deadliest cancers. The breakthrough gives researchers renewed hope that a gene-targeted therapy could ...

3-D mammography detected 34% more breast cancers in screening

October 15, 2018
In traditional mammography screening, all breast tissue is captured in a single image. Breast tomosynthesis, on the other hand, is three-dimensional and works according to the same principle as what is known as tomography. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.