Your brain responses to music reveal if you're a musician or not

January 23, 2018, University of Jyväskylä
Brain areas best predicting musicianship. Red: left/right anterior cingulate gyrus. Green: right inferior frontal gyrus. Blue: right superior temporal gyrus. Gray: caudate nucleus, middle frontal gyrus, inferior frontal gyrus. Credit: University of Jyväskylä

How your brain responds to music listening can reveal whether you have received musical training, according to new Nordic research conducted in Finland (University of Jyväskylä and AMI Center) and Denmark (Aarhus University).

By applying methods of computational analysis and machine learning on imaging data collected during music listening, the researchers we able to predict with a significant accuracy whether the listeners were musicians or not. These results emphasize the striking impact of on our neural responses to music to the extent of discriminating musicians' brains from non-musicians' brains despite other independent factors such as musical preference and familiarity.

The research also revealed that the brain areas that best predict musicianship exist predominantly in the frontal and temporal areas of the brain's . These findings conform to previous work on how the brain processes certain acoustic characteristics of music as well as intonation in speech. The paper was published on January 15 in the journal Scientific Reports.

The study utilized imaging (fMRI) brain data collected by Professor Elvira Brattico's team at Aarhus University. The data was collected from 18 musicians and 18 non-musicians while they attentively listened to music of different genres. Computational algorithms were applied to extract musical features from the presented music.

"A novel feature of our approach was that, instead of relying on static representations of brain activity, we modelled how music is processed in the brain over time. Taking the temporal dynamics into account was found to improve the results remarkably," explains Pasi Saari, Postdoctoral Researcher at the University of Jyväskylä and the main author of the study.

As the last step of modelling, the researchers used machine learning to form a model that predicts musicianship from a combination of brain regions.

The machine learning model was able to predict the listeners' musicianship with 77 % accuracy, a result that is on a par with similar studies on participant classification with, for example, clinical populations of brain-damaged patients. The areas where music processing best predicted musicianship resided mostly in the right hemisphere, and included areas previously found to be associated with engagement and attention, processing of musical conventions, and processing of music-related sound features (e.g. pitch and tonality).

"These areas can be regarded as core structures in music processing which are most affected by intensive, lifelong musical training," states Iballa Burunat, Postdoctoral Researcher at the University of Jyväskylä and a co-author of the study.

In these areas, the processing of higher-level features such as tonality and pulse was the best predictor of musicianship, suggesting that musical training affects particularly the processing of these aspects of music.

"The novelty of our approach is the integration of computational acoustic feature extraction with functional neuroimaging measures, obtained in a realistic music-listening environment, and taking into account the dynamics of neural processing. It represents a significant contribution that complements recent brain-reading methods which decode participant information from brain activity in realistic conditions," concludes Petri Toiviainen, Academy Professor at the University of Jyväskylä and the senior author of the study.

Explore further: Musical brain-reading sheds light on neural processing of music

More information: Pasi Saari et al. Decoding Musical Training from Dynamic Processing of Musical Features in the Brain, Scientific Reports (2018). DOI: 10.1038/s41598-018-19177-5

Related Stories

Musical brain-reading sheds light on neural processing of music

December 17, 2013
Finnish and Danish researchers have developed a new method that performs decoding, or brain-reading, during continuous listening to real music. Based on recorded brain responses, the method predicts how certain features related ...

This is your brain on Vivaldi and Beatles

August 7, 2013
Listening to music activates large networks in the brain, but different kinds of music are processed differently. A team of researchers from Finland, Denmark and the UK has developed a new method for studying music processing ...

How musical training affects speech processing

December 5, 2017
Musical training is associated with various cognitive improvements and pervasive plasticity in human brains. Among its merits, musical training is thought to enhance the cognitive and neurobiological foundation of speech ...

Musical training increases blood flow in the brain

May 7, 2014
Research by the University of Liverpool has found that brief musical training can increase the blood flow in the left hemisphere of our brain. This suggests that the areas responsible for music and language share common brain ...

Now you like it, now you don't: Brain stimulation can change how much we enjoy and value music

November 20, 2017
Enjoyment of music is considered a subjective experience; what one person finds gratifying, another may find irritating. Music theorists have long emphasized that although musical taste is relative, our enjoyment of music, ...

Research team finds neurological notes that help identify how we process music

October 26, 2015
New York University researchers have identified how brain rhythms are used to process music, a finding that also shows how our perception of notes and melodies can be used as a method to better understand the auditory system.

Recommended for you

Research shows signalling mechanism in the brain shapes social aggression

October 19, 2018
Duke-NUS researchers have discovered that a growth factor protein, called brain-derived neurotrophic factor (BDNF), and its receptor, tropomyosin receptor kinase B (TrkB) affects social dominance in mice. The research has ...

Good spatial memory? You're likely to be good at identifying smells too

October 19, 2018
People who have better spatial memory are also better at identifying odors, according to a study published this week in Nature Communications. The study builds on a recent theory that the main reason that a sense of smell ...

How clutch molecules enable neuron migration

October 19, 2018
The brain can discriminate over 1 trillion odors. Once entering the nose, odor-related molecules activate olfactory neurons. Neuron signals first accumulate at the olfactory bulb before being passed on to activate the appropriate ...

Scientists discover the region of the brain that registers excitement over a preferred food option

October 19, 2018
At holiday buffets and potlucks, people make quick calculations about which dishes to try and how much to take of each. Johns Hopkins University neuroscientists have found a brain region that appears to be strongly connected ...

Gene plays critical role in noise-induced deafness

October 19, 2018
In experiments using mice, a team of UC San Francisco researchers has discovered a gene that plays an essential role in noise-induced deafness. Remarkably, by administering an experimental chemical—identified in a separate ...

Weight loss success linked with active self-control regions of the brain

October 18, 2018
New research suggests that higher-level brain functions have a major role in losing weight. In a study among 24 participants at a weight-loss clinic, those who achieved greatest success in terms of weight loss demonstrated ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.