Researchers identify gene responsible for mesenchymal stem cells' stem-ness'

January 22, 2018, The Scripps Research Institute
Credit: CC0 Public Domain

Many doctors, researchers and patients are eager to take advantage of the promise of stem cell therapies to heal damaged tissues and replace dysfunctional cells. Hundreds of ongoing clinical trials are currently delivering these therapies to patients worldwide.

Mesenchymal stem cells (MSCs) are popular tools for these therapies because they can differentiate into a variety of mature cell types such as bone, fat and cartilage. They also support hematopoiesis—the formation of blood cells—and secrete beneficial factors that promote tissue repair. Unfortunately, scientists often struggle to predict how these cells will act in different environments in the body.

Researchers on the Florida campus of The Scripps Research Institute (TSRI) recently published a study in the journal Cell Death and Differentiation identifying factors crucial to MSC differentiation, providing insight into how these cells should be studied for clinical purposes.

Primary MSCs from bone marrow are delicate, and it´s difficult to keep them alive in a petri dish. For this reason, most scientists studying them use cell lines, cells that have been altered to live and replicate indefinitely. To create immortal MSC lines, scientists delete a gene called p53 required for the cells to undergo normal, programmed cell death, called apoptosis. The new study, conducted by researchers in the lab of TSRI Professor Donald Phinney, PhD, shows that the gene influences far more than just apoptosis; it is also a master regulator of the cells' ability to differentiate.

"Many publications have used immortalized cells as MSC surrogates, but they may not mean much if they don't have functionally accurate p53," says Siddaraju Boregowda, PhD, a TSRI research associate and one of the study's two lead authors.

The researchers compared cells cultured from mice that did not express the with cells that came from normal mice. They found that the level of active p53 was the master regulatory factor in determining how MSCs grow and differentiate. The study explains that the gene exerts its effects through its interactions with as well as two transcription factors: TWIST2 and PPARG.

When the researchers deleted p53 completely, the cells became immortal but quickly developed into bone. They lost their ability to promote hematopoiesis or become other types of cells, like fat. A low level of p53 induced TWIST2, which kept the MSCs in a stem state, rather than promoting any differentiation. A slightly higher level of p53 induced PPARG and reactive oxygen species, which led the cells to differentiate into , but not bone. At even higher levels of p53, the cells died.

A basal level of p53 in cells in the culture is required for them to act as an accurate model for cells in the body, explains Veena Krishnappa, PhD, the study's other lead author, previously a postdoctoral researcher in Phinney's lab.

In addition to suggesting that the dramatic effects of deleting p53 may make MSC cell lines an inappropriate surrogate to predict the cells' behavior in clinical applications, the study also suggests that inactivation of p53 may play multiple roles in the progression of bone cancers.

"P53 inactivation not only promotes sustained growth but also makes the insensitive to oxidative stress and short-circuits pathways that constrain cellular differentiation. Each of these changes likely contribute significantly to tumorigenesis and tumor progression," says Phinney. "Continuing to delineate the important role of MSCs in skeletal disease may open the door to devising new therapeutic interventions."

Explore further: Scientists find way to predict activity of stem cells

More information: Siddaraju V. Boregowda et al. Basal p53 expression is indispensable for mesenchymal stem cell integrity, Cell Death & Differentiation (2018). DOI: 10.1038/s41418-017-0004-4

Related Stories

Scientists find way to predict activity of stem cells

February 29, 2016
Scientists from the Florida campus of The Scripps Research Institute (TSRI) have for the first time developed a way to predict how a specific type of stem cell will act against different diseases. With more than 500 stem ...

New study reveals how specialized cells help each other survive during times of stress

November 3, 2015
Nov. 3, 2015 - A team led by scientists from the Florida campus of The Scripps Research Institute (TSRI) and the University of Pittsburgh has shown for the first time how one set of specialized cells survives under stress ...

Recommended for you

Variants in non-coding DNA contribute to inherited autism risk

April 19, 2018
In recent years, researchers have firmly established that gene mutations appearing for the first time, called de novo mutations, contribute to approximately one-third of cases of autism spectrum disorder (ASD). In a new study, ...

Researchers discover link between gene variation and language

April 18, 2018
What shapes the basic features of a language?

Natural selection still at work in humans

April 18, 2018
Evolution has shaped the human race, with University of Queensland researchers finding signatures of natural selection in the genome that influence traits associated with fertility and heart function.

Gene therapy for beta-thalassemia safe, effective in people

April 18, 2018
In a powerful example of bench-to-bedside science showing how observations made in the lab can spark life-altering therapies in clinic, an international team of clinician-investigators has announced that gene therapy for ...

Potential lines of attack against prostate cancer

April 17, 2018
Researchers from The University of East Anglia (UEA) have contributed to the world's largest study into genes that drive prostate cancer – identifying 80 molecular weaknesses that could be targeted by drugs to treat the ...

Epstein-Barr virus linked to seven serious diseases

April 16, 2018
A far-reaching study conducted by scientists at Cincinnati Children's reports that the Epstein-Barr virus (EBV)—best known for causing mononucleosis—also increases the risks for some people of developing seven other major ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.