Researchers reveal new insights into motor control brain processes

January 22, 2018, Hong Kong University of Science and Technology
Researchers reveal new insights into how your brain keeps its balance
Three-color wide-field (Upper Left) and super-resolution localization microscopy (SRLM) (Upper Right) images of cultured cortical neurons labeled with anti-ATM (blue), anti-VAMP2 (green), and anti-ATR (red) antibodies. (Scale bars: as marked.) Credit: Division of Life Science, HKUST

As with all things in life, healthy brain function depends on a balance of forces. We think of our brains as active, mobilizing limbs and body parts. But it is just as important for brains to stop these actions.

In a recent study, an interdisciplinary team of scientists from The Hong Kong University of Science and Technology (HKUST) and the Chinese University of Hong Kong (CUHK) have discovered that two large protein kinases, ATM and ATR, cooperate to establish the go/stop balance. The findings were published in the Journal Proceedings of the National Academy of Sciences.

"Our discovery offers a fresh perspective on how our brain balances excitation and inhibition," said Aifang Cheng, first author of the paper. "We show that ATM and ATR regulate each other's levels in the brain. When ATM levels drop, ATR levels increase and the reverse. Just as important, regular brain activity also changes the levels of the two proteins. This means that neuronal activity and the two kinases are in a dynamic 'conversation' that helps to keep the appropriate balance between excitation and inhibition (known as the E/I balance) by adjusting the levels of ATM and ATR."

Just as important, the team found that the two proteins divide up responsibilities for the 'go' and 'stop' functions. ATM helps regulate only excitatory events while ATR helps regulate only the inhibitory ones; this is achieved by controlling the movement of tiny synaptic vesicles in the neuronal synapse—the gap between two neurons that regulates information flow in the .

Our model proposes that in synapses, ATM protein localizes predominately in presynaptic terminals, while ATR localizes on both side of synapse. ATM binds exclusively to VGLUT1+ vesicles, while ATR localizes only to VGAT+ vesicles. Compared with WT, Atm KO neurons show decreased E/I balance, impaired clathrin-mediated synaptic vesicle endocytosis, increased ATR protein levels, and larger vesicle size. Credit: Division of Life Science, HKUST

Using super-resolution microscopy, the researchers were able to view the cellular location of the two kinases at ultra-high magnification. The microscope's active stage locking provided the stability needed to obtain high-resolution images. The groups had previously worked together to show that ATM was found on synaptic vesicles, but no one had ever looked for ATR. Combining their efforts for a second time, the team was able to show that ATR was also on synaptic vesicles (identified with a protein called VAMP2).

"One of the challenges we faced was that even at high magnification, all vesicles look pretty much alike," said Du Shengwang, physics professor and associate director of SRIC. "To provide differentiation, we developed a three-color version of our super-resolution system, which allowed the team to prove that ATM and ATR were never found on the same VAMP2-containing synaptic vesicle."

The HKUST team then sent their findings to their collaborators at CUHK, where they produced crisp, of normal synapses and synapses from neurons that had no ATM protein. This allowed Cheng to measure the size of the , and she discovered that the vesicles without ATM were bigger than normal, a hint that there was a problem with the composition of the synaptic membrane.

"The new findings are in the realm of basic research, but they have important implications for human disease," said Karl Herrup, the senior author of the manuscript. "Epilepsy, for example, is a condition where one of the problems is that inhibition fails. As our findings would predict, humans with too little ATR have a problem with epilepsy, while people with ATM deficiency by contrast are ataxic—a reduced ability to make finely controlled movements and keep the proper E/I ratio. This means that there is a yin-yang relationship between ATM and ATR. And really, this is only the beginning. We believe that our work has potential relevance to a much broader range of neurologic conditions."

Explore further: Tau prevents synaptic transmission at early stage of neurodegeneration

More information: Aifang Cheng et al, ATM and ATR play complementary roles in the behavior of excitatory and inhibitory vesicle populations, Proceedings of the National Academy of Sciences (2017). DOI: 10.1073/pnas.1716892115

Related Stories

Tau prevents synaptic transmission at early stage of neurodegeneration

May 19, 2017
Tau proteins are involved in more than twenty neurodegenerative diseases, including various forms of dementia. These proteins clump together in patients' brains to form neuronal tangles: protein aggregation that eventually ...

Molecule may help maintain brain's synaptic balance

June 13, 2017
Many neurological diseases are malfunctions of synapses, or the points of contact between neurons that allow senses and other information to pass from finger to brain. In the brain, there is a careful balance between the ...

New regulator discovered for information transfer in the brain

June 20, 2013
The protein mSYD1 has a key function in transmitting information between neurons. This was recently discovered by the research group of Prof Peter Scheiffele at the Biozentrum, University of Basel. The findings of the investigations ...

New insights into underlying cellular mechanisms of information processing in the brain

February 18, 2015
Researchers at the Max Planck Florida Institute for Neuroscience and the Pasteur Institute have uncovered a key factor in regulating information transmittal during the early stages of auditory processing.

Rules of the neural roads: Traffic control in your synapses

June 14, 2017
While the mechanism of transmission of information at the contact point between two neurons—the famous synapse—has been thoroughly studied, the transportation of this information within the terminal end of the neuron, ...

Proteins involved in brain's connectivity are controlled by multiple checkpoints

August 31, 2017
University of Bristol scientists have found that the delivery of a group of proteins involved in the information flow between the brain's nerve cells to the synapse is much more sophisticated than previously suspected. The ...

Recommended for you

New research suggests it's all about the bass

August 15, 2018
When we listen to music, we often tap our feet or bob our head along to the beat – but why do we do it? New research led by Western Sydney University's MARCS Institute suggests the reason could be related to the way our ...

Protein droplets keep neurons at the ready and immune system in balance

August 15, 2018
Inside cells, where DNA is packed tightly in the nucleus and rigid proteins keep intricate transport systems on track, some molecules have a simpler way of establishing order. They can self-organize, find one another in crowded ...

Self-control develops gradually in adolescent brain

August 15, 2018
Different parts of the brain mature at different times, which may help to explain impulsive behaviors in adolescence, suggest researchers from Penn State and the University of Pittsburgh.

Research reveals that what we see is not always what we get

August 15, 2018
Researchers are helping to explain why some people anticipate and react to fast-moving objects much quicker than others.

New approach to treating chronic itch

August 15, 2018
Researchers at the University of Zurich have discovered a new approach to suppressing itch by targeting two receptors in the spinal cord with the right experimental drug. In a series of experiments in mice and dogs, they ...

Immune cells in the brain have surprising influence on sexual behavior

August 14, 2018
Researchers have found a surprising new explanation of how young brains are shaped for sexual behavior later in life.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.