Cancer-killing virus acts by alerting immune system

February 13, 2018 by Margaret Allen, University of California, San Francisco
Cancer-killing virus acts by alerting immune system
A tumor with green patches of vaccinia virus infection surrounded by red blood vessels. Credit: Donald McDonald Lab

A new UC San Francisco study has shown that a cancer-killing ("oncolytic") virus currently in clinical trials may function as a cancer vaccine—in addition to killing some cancer cells directly, the virus alerts the immune system to the presence of a tumor, triggering a powerful, widespread immune response that kills cancer cells far outside the virus-infected region.

Using novel approaches to examine exactly how oncolytic viruses attack tumors, the new study—published online in early form on December 19, 2017, and in print in the February 15, 2018, issue of Cancer Research - provided surprising insights about how a viral infection can cooperate with the immune system to attack cancer . The study highlights an opportunity to combine this form of therapy with cancer immunotherapy drugs such as checkpoint inhibitors, which unleash the immune system's full cancer-fighting power, the researchers say.

The idea that viruses could fight cancer goes back to the early 20th century, when doctors noted that cancer patients sometimes experienced dramatic remission after getting . Researchers have been developing oncolytic viruses since the 1980s, but following the U.S. Food and Drug Administration's 2015 approval of Amgen's Imlygic (T-Vec) as the first oncolytic viral therapy in the U.S., such viruses have become a closely watched area of therapeutic development.

However, researchers are still trying to understand the fundamentals of how viral therapies actually kill cancer cells, and how to optimize their effects. In different contexts, viruses appear capable of attacking tumors in a number of different ways—by directly infecting them, by releasing tumor proteins that trigger a broad against the cancer, and by damaging the blood supply tumors need to survive.

To better understand the underlying mechanisms of these viral therapies, a collaboration was forged between UCSF vascular researcher Donald McDonald, MD, Ph.D., and researchers at San Francisco-based biotech SillaJen Biotherapeutics Inc. (formerly Jennerex Biotherapeutics, Inc.), a subsidiary of SillaJen, Inc., headquartered in Korea.

SillaJen is developing an oncolytic viral therapy called Pexa-Vec, currently in phase III and phase Ib/II clinical trials for use against primary liver and colorectal cancers, respectively. Pexa-Vec is an engineered virus based on the harmless vaccinia cowpox virus—also the basis for the original smallpox vaccine. Early observations suggesting that the virus might attack cancer in part by damaging blood vessels that feed tumor growth led the SillaJen team to strike up a collaboration with McDonald, an expert in tumor vasculature, to investigate the virus's mechanism of action in animal models.

"This got my attention in part because this virus could be given systemically by intravenous injection, in contrast to most that are injected into the tumor itself, which obviously limits their therapeutic potential against cancers that are inaccessible or have spread to multiple sites in the body," said McDonald, who is a member of the UCSF Helen Diller Family Comprehensive Cancer Center and the Cardiovascular Research Institute at UCSF.

The Pexa-Vec virus was originally developed by Michael Mastrangelo, MD, and Edmund Lattime, Ph.D., of Thomas Jefferson University in Philadelphia, who engineered the harmless vaccinia virus to infect only cancer cells and other rapidly dividing cells, as well as to stimulate immune activity, in hopes of boosting the immune response to tumors.

To study how the modified virus attacks tumors, researchers in the McDonald lab injected it intravenously into mice genetically modified to develop neuroendocrine pancreatic cancer. They found that the virus failed to infect healthy organs or make the animals ill, but succeeded in infecting blood vessels within tumors. These initial infections caused the vessels to leak and expose the tumor cells to the virus. In these experiments, the virus managed to infect and destroy only a small proportion of tumor cells directly, the researchers found, but within five days of the initial infection, the rest of the tumor began to be killed by a powerful immune reaction.

"At first small spots of the tumor were infected, but then most of the tumor started to die," McDonald said. "We were able to show that while only about five percent of cells were infected by the virus, the number of cells that were killed was more than ten times higher. As far as I know, no one has ever done this kind of analysis."

The researchers found that by killing some directly, the viral infection exposed tumor proteins that could be detected by the immune system, triggering an immune attack on the rest of the tumor. The researchers demonstrated this by temporarily getting rid of the immune system's cancer-killing cells, called CD8+ or cytotoxic T cells, and showing that without these cells, the virus killed only the initial five percent of cancer cells.

McDonald's team wondered whether they could improve the efficacy of the virus by adding in a second drug called Sutent (sunitinib) that blocks blood vessel growth and alters immune function. The combination worked, with significantly greater tumor killing than with the virus alone. When the researchers examined the tumors, they discovered that the second drug acted by making the immune system hyper-alert to tumor proteins released by the viral infection, rather than through effects on

This finding suggests that pairing Pexa-Vec's ability to awaken the immune system to previously ignored signs of cancer with the newest generation of checkpoint inhibitors, which act by unleashing the immune system's full force, might be an extremely potent combination therapy.

"The question with immunotherapy has always been—why doesn't the immune system naturally detect and attack ?" McDonald said. "It seems like these viruses are like setting off a bomb that jars the immune system. The infection releases tumor antigens in a way that jump-starts the immune response."

In an effort to further exploit the potential of Pexa-Vec to activate the immune system to fight cancer, as seen in McDonald's preclinical data, SillaJen recently announced a new clinical trial in collaboration with New York-based Regeneron Inc. to test Pexa-Vec and REGN2810, a PD-1 checkpoint inhibitor, in combination against renal cell carcinoma, and recently signed a sponsored research agreement with UCSF to enable joint support of parallel preclinical experiments by McDonald's team.

"The preclinical work being done by the McDonald lab has been extremely informative in helping us understand that Pexa-Vec is working like a vaccine to sensitize the immune system to attack ," said James Burke, CMO of SillaJen Biotherapeutics. "Our ongoing collaboration will help us understand how best to combine Pexa-Vec with immune-modulation such as anti-PD1 antibody therapy to maximize anti-tumor immune response. If the is igniting a fire within the , we want to see if we can use these immune modulators to pour gas on the flames."

Explore further: Clinical trial uses a genetically engineered virus to fight cancer

More information: Minah Kim et al, Amplification of oncolytic vaccinia virus widespread tumor cell killing by sunitinib through multiple mechanisms, Cancer Research (2017). DOI: 10.1158/0008-5472.CAN-15-3308

Related Stories

Clinical trial uses a genetically engineered virus to fight cancer

August 15, 2017
Sanford Health is the first site in the United States to launch a clinical trial using a genetically-engineered virus that aims to destroy therapy-resistant tumors.

Could viruses take cancer immunotherapy to the next level?

January 3, 2018
Immunotherapy, which helps the body's immune system attack cancer, has revolutionized treatment for cancers such as melanoma and leukemia. However, many other kinds of cancer remain resistant. A new study led by researchers ...

Stealth virus for cancer therapy

January 31, 2018
Scientists from the University of Zurich have redesigned an adenovirus for use in cancer therapy. To achieve this, they developed a new protein shield that hides the virus and protects it from elimination. Adapters on the ...

Inactivated vaccinia virus effective against advanced cancers alone or combined with immune checkpoint inhibitors

September 6, 2017
Modified vaccinia virus Ankara (MVA), a poxvirus, was found to be safe when administered in an inactivated form in mice, and delivering it into the tumor in addition to systemic delivery of an immune checkpoint inhibitor ...

Poliovirus therapy induces immune responses against cancer

September 20, 2017
An investigational therapy using modified poliovirus to attack cancer tumors appears to unleash the body's own capacity to fight malignancies by activating an inflammation process that counter's the ability of cancer cells ...

Adenoviruses and the immune system join forces against cancer

February 16, 2017
Researchers of the Cancer Virotherapy Research Group of Bellvitge Biomedicine Research Institute (IDIBELL), led by Dr. Ramon Alemany, have developed an oncolytic virus capable of redirecting the patient's immune system against ...

Recommended for you

Stem cell vaccine immunizes lab mice against multiple cancers

February 15, 2018
Stanford University researchers report that injecting mice with inactivated induced pluripotent stem cells (iPSCs) launched a strong immune response against breast, lung, and skin cancers. The vaccine also prevented relapses ...

Induced pluripotent stem cells could serve as cancer vaccine, researchers say

February 15, 2018
Induced pluripotent stem cells, or iPS cells, are a keystone of regenerative medicine. Outside the body, they can be coaxed to become many different types of cells and tissues that can help repair damage due to trauma or ...

Team paves the way to the use of immunotherapy to treat aggressive colon tumors

February 15, 2018
In a short space of time, immunotherapy against cancer cells has become a powerful approach to treat cancers such as melanoma and lung cancer. However, to date, most colon tumours appeared to be unresponsive to this kind ...

Can our genes help predict how women respond to ovarian cancer treatment?

February 15, 2018
Research has identified gene variants that play a significant role in how women with ovarian cancer process chemotherapy.

First comparison of common breast cancer tests finds varied accuracy of predictions

February 15, 2018
Commercially-available prognostic breast cancer tests show significant variation in their abilities to predict disease recurrence, according to a study led by Queen Mary University of London of nearly 800 postmenopausal women.

Catching up to brain cancer: Researchers develop accurate model of how aggressive cancer cells move and spread

February 15, 2018
A brief chat at a Faculty Senate meeting put two University of Delaware researchers onto an idea that could be of great value to cancer researchers.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

FredJose
not rated yet Feb 15, 2018
Very good stuff. Excellent work by the researchers!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.