Cardiac macrophages found to contribute to a currently untreatable type of heart failure

February 14, 2018, Massachusetts General Hospital
Credit: CC0 Public Domain

A team of Massachusetts General Hospital (MGH) investigators has discovered, for the first time, that the immune cells called macrophages contribute to a type of heart failure for which there currently is no effective treatment. In their report published in the February issue of the Journal of Experimental Medicine, the MGH team describes finding how macrophage activity leads to the development of heart failure with preserved ejection fraction (HFpEF) in mouse models of the condition, which accounts for around half of all human heart failure cases.

"We show that macrophages - primarily known for removing cellular debris, pathogens and other unwanted materials - are actively involved in the development of HFpEF," says Maarten Hulsmans, PhD, a research fellow in the MGH Center for Systems Biology and lead author of the paper. "These findings put macrophages on the map when it comes to HFpEF therapy and open up previously unexplored treatment options."

The concept of heart failure traditionally referred to a loss of the organ's pumping capacity, which is called . But in HFpEF the heart retains the ability to pump or eject blood into the circulation. What is compromised is the ability of the heart muscle to relax and allow blood to flow into the left ventricle, reducing the amount of blood available to pump into the aorta. Symptoms of HFpEF are similar to those of in general, but since factors contributing to the condition are not well understood, it has been difficult to find promising therapies.

Interactions among cells within the heart - including macrophages - are essential to normal but can also contribute to problems. For example, after the heart muscle is damaged by a heart attack, macrophages induce the cells called fibroblasts to generate the connective tissues that help reinforce damaged tissue. But excessive fibroblast activation can lead to the distortion and stiffening of tissues, further reducing cardiac function.

To explore a potential role for macrophages in HFpEF, the MGH team examined cardiac macrophages in two mouse models that develop the sort of diastolic dysfunction - impaired relaxation of the - that characterizes HFpEF. Those animals were found to have increased macrophage density in the and exhibited elevated levels of a factor called IL-10, which is known to contribute to fibroblast activation. Deletion of IL-10 from cardiac macrophages in one model, in which the development of hypertension is induced, prevented the upregulation of macrophages and reduced the numbers and activation of cardiac fibroblasts. Levels of cardiac macrophages were also elevated in tissue biopsies from human patients with HFpEF, as were levels of circulating monocytes, which are precursors of macrophages.

"Not only were numbers of inflammatory cardiac macrophages increased in both the mice and in humans with HFpEF, but their characteristics and functions were also different from those in a healthy heart," says Hulsmans. "Through their participation in the remodeling of tissue, these macrophages increase the production of extracellular matrix, which reduces diastolic relaxation. Our findings regarding the cell-specific knockout of IL-10 are the first to support the contribution of macrophages to HFpEF."

Senior author Mathias Nahrendorf, MD, PhD , of the Center for Systems Biology, adds, "Heart muscle cells and fibroblasts have been considered the major contributors to HFpEF. Our identification of the central involvement of macrophages should give us a new focus for drug development. And since naturally take up materials for disposal, inducing them to ingest drugs carried in by nanoparticles could limit their contributions to the development of HFpEF." Nahrendorf is a professor of Radiology at Harvard Medical School.

Explore further: Researchers identify potential treatment for diastolic dysfunction in heart failure

More information: Maarten Hulsmans et al, Cardiac macrophages promote diastolic dysfunction, The Journal of Experimental Medicine (2018). DOI: 10.1084/jem.20171274

Related Stories

Researchers identify potential treatment for diastolic dysfunction in heart failure

February 7, 2018
Researchers at the University of Colorado School of Medicine have identified a potential treatment target for patients with a common type of heart failure.

Macrophages shown to be essential to a healthy heart rhythm

April 20, 2017
A Massachusetts General Hospital (MGH)-led research team has identified a surprising new role for macrophages, the white blood cells primarily known for removing pathogens, cellular debris and other unwanted materials. In ...

Abdominal obesity linked to all-cause mortality in HFpEF

November 28, 2017
(HealthDay)—For patients with heart failure with preserved ejection fraction (HFpEF), abdominal obesity is associated with increased risk of all-cause mortality, according to a study published in the Dec. 5 issue of the ...

Macrophage population activates repair in murine heart attack model

May 3, 2016
Following a heart attack, successful repair of damaged tissue can prevent cardiac rupture and other adverse outcomes. The ability to repair myocardial tissue depends on the activation of fibroblasts, which stimulate the formation ...

Ivabradine may not benefit certain heart failure patients

April 30, 2017
Researchers have completed a randomized clinical trial in patients with heart failure with preserved ejection fraction (HFpEF), which currently has no effective treatment for reducing morbidity and mortality.

Altering the appearance of macrophages to prevent atherosclerosis

February 8, 2018
It might be possible to prevent atherosclerosis by changing the appearance of macrophages, cells of the immune system that for example digest foreign substances. In her Ph.D. dissertation, Baoyan Ren examined several ways ...

Recommended for you

Study shows in-home therapy effective for stroke rehabilitation

May 24, 2018
In-home rehabilitation, using a telehealth system and supervised by licensed occupational/physical therapists, is an effective means of improving arm motor status in stroke survivors, according to findings presented by University ...

New guidelines mean 1 in 3 adults may need blood pressure meds

May 23, 2018
(HealthDay)—One out of every three U.S. adults has high blood pressure that should be treated with medication, under guidelines recently adopted by the two leading heart health associations.

Surgery involving ultrasound energy found to treat high blood pressure

May 23, 2018
An operation that targets the nerves connected to the kidney has been found to significantly reduce blood pressure in patients with hypertension, according to the results of a clinical trial led in the UK by Queen Mary University ...

To have or not to have... your left atrial appendage closed

May 22, 2018
Each year in the U.S., more than 300,000 people have heart surgery. To reduce risk of stroke for their patients, surgeons often will close the left atrial appendage, which is a small sac in the left side of the heart where ...

Daily egg consumption may reduce cardiovascular disease

May 21, 2018
People who consume an egg a day could significantly reduce their risk of cardiovascular diseases compared with eating no eggs, suggests a study carried out in China, published in the journal Heart.

Natural antioxidant bilirubin may improve cardiovascular health

May 18, 2018
Bilirubin, a yellow-orange pigment, is formed after the breakdown of red blood cells and is eliminated by the liver. It's not only a sign of a bruise, it may provide cardiovascular benefits, according to a large-scale epidemiology ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.