Highly mutated protein in skin cancer plays central role in skin cell renewal

February 20, 2018 by Karen Kreeger, Perelman School of Medicine at the University of Pennsylvania
When KMT2D was depleted (right) from human skin cells, undifferentiated stem cells could not multiply normally, causing different layers of skin epidermis to become thickened and disorganized. Credit: The lab of  Brian C. Capell, MD, PhD, Perelman School of Medicine, University Pennsylvania

Approximately once a month, our skin completely renews itself. If this highly coordinated process goes awry, it can lead to a variety of skin diseases, ranging from skin cancer to psoriasis. Cells lining such organs as skin and the gut, lungs, and many other organs (collectively called epithelial tissue) rely on a delicate balance of self-renewal, proliferation, and differentiation. However, disruption of this equilibrium may drive cancer and other disorders.

Researchers from the Perelman School of Medicine at the University Pennsylvania have shown for the first time that a key protein called KMT2D involved in the of gene expression guides this renewal. They published their work this month in Genes & Development. Epigenetics involves chemical modifications to DNA and its supporting proteins that affect the availability of genes to be "read" and made into proteins.

"We have known that KMT2D is one of the most frequently mutated genes in all of , as well as other epithelial cancers such as those of the lung, esophagus, mouth, and throat," said senior author Brian C. Capell, MD, Ph.D., an assistant professor of Dermatology and Genetics. "However, prior to this study, we had no idea how those mutations caused cancer or even what KMT2D did in these tissues. Now, armed with this knowledge, I envision in the near future we may be able to test the ability of novel epigenetic drugs to reverse these deleterious mutations."

In the study, when the researchers depleted KMT2D from , undifferentiated stem cells could not multiply normally, causing premature differentiation of the tissue into a more mature, differentiated state. As a result, when grown in three-dimensional cultures, the different layers of skin epidermis became thickened and disorganized.

"Our data suggests that KMT2D is critical for the proper coordination of our skin's turnover process," Capell said. "Because are reversible, we hope that our ongoing studies in KMT2D mouse models will ultimately lead to identifying and testing new topical therapies preventing and treating skin cancer in people."

Explore further: Researchers gain insight into breast cancer drug resistance

More information: Enrique Lin-Shiao et al. KMT2D regulates p63 target enhancers to coordinate epithelial homeostasis, Genes & Development (2018). DOI: 10.1101/gad.306241.117

Related Stories

Researchers gain insight into breast cancer drug resistance

March 24, 2017
Breast cancer's ability to develop resistance to treatment has frustrated researchers and physicians and has thwarted even the latest and greatest targeted therapies. For example, after researchers identified a disease pathway ...

Researchers define how cancer cell of origin controls invasive and metastatic properties of tumor cells

November 24, 2016
Researchers at the Université libre de Bruxelles, ULB define for the first time how the cancer cell of origin controls invasive and metastatic properties of tumor cells.

New findings explain how UV rays trigger skin cancer

October 18, 2017
Melanoma, a cancer of skin pigment cells called melanocytes, will strike an estimated 87,110 people in the U.S. in 2017, according to the Centers for Disease Control and Prevention. A fraction of those melanomas come from ...

Why thick skin develops on palms and soles, and its links to cancer

February 1, 2017
Scientists from Queen Mary University of London have discovered that foot callouses/keratoderma (thickened skin) can be linked to cancer of the oesophagus (gullet), a disease which affects more than 8000 people in the UK ...

Study identifies enzyme key to link between age-related inflammation and cancer

February 3, 2016
For the first time, researchers have shown that an enzyme key to regulating gene expression—and also an oncogene when mutated—is critical for the expression of numerous inflammatory compounds that have been implicated ...

Recommended for you

Study reveals startlingly different tissue sensitivities to cancer-driving genes

March 22, 2018
New research led by Harvard Medical School and Brigham and Women's Hospital has unmasked hundreds of cancer-driving genes and revealed that different tissue types have shockingly variable sensitivities to those genes.

Early life experiences influence DNA in the adult brain

March 22, 2018
In the perennial question of nature versus nurture, a new study suggests an intriguing connection between the two. Salk Institute scientists report in the journal Science that the type of mothering a female mouse provides ...

Once-mysterious 'Atacama Skeleton' illuminates genetics of bone disease

March 22, 2018
The skeleton, discovered in a leather pouch behind an abandoned church, was pristine: a tiny figure, just six inches long, with a cone-shaped head, 10 pairs of ribs, and bones that looked like those of an eight-year-old child. ...

Does genome sequencing increase downstream costs?

March 22, 2018
As genome sequencing enters the clinic, fears have arisen about its potential to motivate follow-up testing and ongoing screening that could drastically increase health care spending. But few studies have quantified the downstream ...

First 'non-gene' mutations behind neurodevelopmental disorders discovered

March 21, 2018
In the largest study of its kind, genetic changes causing neurodevelopmental disorders have been discovered by scientists at the Wellcome Sanger Institute and their collaborators in the NHS Regional Genetics services. The ...

Two genes likely play key role in extreme nausea and vomiting during pregnancy

March 21, 2018
Most women experience some morning sickness during pregnancy, but about 2 percent of pregnant women experience a more severe form of nausea and vomiting.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.