A possible way to protect intestinal walls from damage due to chemotherapy

February 8, 2018 by Bob Yirka, Medical Xpress report
Researchers created a chemical (Inh, right) that protected human intestinal cells from the ravages of chemotherapy. Credit: B.J. Leibowitz et al., Science Translational Medicine (2018)

A team of researchers at the University of Pittsburgh has found a possible way to protect cells in the intestines when subjected to chemotherapy. In their paper published in Science Translational Medicine, the team describes their approach, how well it worked in mice, and obstacles yet to be overcome.

Chemotherapy is the administration of a concoction of drugs to kill cancerous tumors. But it also has some negative side effects such as hair loss and vomiting. In this new effort, the researchers have been looking into ways to reduce the to intestinal walls from chemotherapy, both because it would make treatment more bearable and because it would allow for higher doses of chemotherapy.

The intestines are lined with cells that protect against stomach acid and bacteria, and because of that, must be replaced more often than other cells—that means that the intestines have a large supply of . Unfortunately, chemotherapy causes DNA damage to intestinal wall cells, setting off p53, a tumor suppressor. Once p53 is activated, signals induce the creation of the proteins PUMA and p21, which in turn signal the stem cells to begin apoptosis (cell suicide). Prior research has shown that preventing p53 from activating is not a viable option because it would shield tumors from the chemo drugs meant to kill them. In this new effort, the researchers looked instead for a way to prevent PUMA from being created, thus preventing the stem cells from killing themselves off.

Targeting a protein called PUMA could help prevent intestine damage after chemotherapy. Credit: B.J. Leibowitz et al., Science Translational Medicine (2018)

To test this approach, the team engineered PUMA protein-knockout mice and then gave them to see how their intestinal cells fared. The researchers report that there was far less damage than there would have been under normal conditions. Next, the team tested a small molecule that prior research had suggested inhibits the production of PUMA by giving it to healthy normal test mice, then followed up with chemo drugs. They report that once again, the mice showed far less damage to . The final test consisted of inhibiting the protein in cultured colon cells in a petri dish and then dousing them with chemo drugs—once again, the approach appeared to work as hoped.

Emboldened by their results, the team plans to continue testing the approach to find out if it might turn out to be a viable option for human cancer patients.

Chemotherapy damages the intestines, but eliminating a protein called PUMA protects the delicate structures inside the gut. Credit: B.J. Leibowitz et al., Science Translational Medicine (2018)

Explore further: PUMA pathway is a weak link in breast cancer metastasis

More information: Brian J. Leibowitz et al. Targeting p53-dependent stem cell loss for intestinal chemoprotection, Science Translational Medicine (2018). DOI: 10.1126/scitranslmed.aam7610

Abstract
The gastrointestinal (GI) epithelium is the fastest renewing adult tissue and is maintained by tissue-specific stem cells. Treatment-induced GI side effects are a major dose-limiting factor for chemotherapy and abdominal radiotherapy and can decrease the quality of life in cancer patients and survivors. p53 is a key regulator of the DNA damage response, and its activation results in stimulus- and cell type–specific outcomes via distinct effectors. We demonstrate that p53-dependent PUMA induction mediates chemotherapy-induced intestinal injury in mice. Genetic ablation of Puma, but not of p53, protects against chemotherapy-induced lethal GI injury. Blocking chemotherapy-induced loss of LGR5+ stem cells by Puma KO or a small-molecule PUMA inhibitor (PUMAi) prevents perturbation of the stem cell niche, rapid activation of WNT and NOTCH signaling, and stem cell exhaustion during repeated exposures. PUMAi also protects human and mouse colonic organoids against chemotherapy-induced apoptosis and damage but does not protect cancer cells in vitro or in vivo. Therefore, targeting PUMA is a promising strategy for normal intestinal chemoprotection because it selectively blocks p53-dependent stem cell loss but leaves p53-dependent protective effects intact.

Related Stories

PUMA pathway is a weak link in breast cancer metastasis

December 11, 2017
Substantial advancements have improved the success of chemotherapy, radiation, and surgical treatments for primary breast cancers. However, breast cancer that has spread, or metastasized, to other parts of the body remains ...

Study could explain link between high-cholesterol diet and colon cancer

January 25, 2018
New UCLA research could help explain the link between a high-cholesterol diet and an elevated risk for colon cancer.

Drug suppresses spread of breast cancer caused by stem-like cells

December 12, 2017
Rare stem-like tumor cells play a critical role in the spread of breast cancer, but a vulnerability in the pathway that powers them offers a strategy to target these cells using existing drugs before metastatic disease occurs, ...

Scientists identify chain reaction that shields breast cancer stem cells from chemotherapy

February 22, 2017
Working with human breast cancer cells and mice, researchers at Johns Hopkins say they have identified a biochemical pathway that triggers the regrowth of breast cancer stem cells after chemotherapy.

Cancer cells that escape from senescence found to have an enhanced capacity to drive tumor growth

December 22, 2017
An international team of researchers has found that cancer cells that escape from senescence due to use of chemotherapy have an enhanced capacity to drive tumor growth. In their paper published in the journal Nature, the ...

Recommended for you

Research could help fine-tune cancer treatment

May 25, 2018
Cancer therapies that cut off blood supply to a tumour could be more effective in combination with existing chemotherapeutic drugs—according to new research from the University of East Anglia.

Fully reprogrammed virus offers new hope as cancer treatment

May 25, 2018
A cancer treatment that can completely destroy cancer cells without affecting healthy cells could soon be a possibility, thanks to research led by Cardiff University.

Increasing physical activity linked to better immunity in breast cancer patients, study finds

May 25, 2018
A new study from the University of Toronto's Faculty of Kinesiology & Physical Education has found that moderate to vigorous physical activity may help regulate the levels of C-reactive protein – an important biomarker ...

Study finds gut microbiome can control antitumor immune function in liver

May 24, 2018
Scientists have found a connection between bacteria in the gut and antitumor immune responses in the liver. Their study, published May 25 in Science, was led by researchers in the Center for Cancer Research (CCR) at the National ...

Low-fat diet tied to better breast cancer survival

May 24, 2018
(HealthDay)—Breast cancer patients who adopted a low-fat diet were more likely to survive for at least a decade after diagnosis, compared to patients who ate fattier fare, new research shows.

A cascade of immune processes offers insights to triple-negative breast cancer

May 24, 2018
Cancer is crafty. To survive and thrive, tumors find a way of thwarting our body's natural systems.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.