Organ-on-chip technology enters next stage as experts test hepatitis B virus

February 14, 2018, Imperial College London
Primary hepatocytes grown in 3-D microfluidic "liver-on-a-chip" platform following infection with hepatitis B virus. Credit: Marcus Dorner/Imperial College London

Scientists at Imperial College London have become the first in the world to test how pathogens interact with artificial human organs.

Artificial human organs, or organ-on-chip technologies, simulate a whole organ's cell make up and physiology. They act as alternatives to animal models in safety testing, but until now they have not been used to test how infectious diseases interact with the organs.

Now, researchers from Imperial are using this technology to determine how pathogens interact with artificial organs. They hope it will help us to better understand the resulting disease and develop new treatments.

In particular, the team used an artificial liver - originally developed at MIT, the University of Oxford, and biotechnology company CN Bio Innovations - and tested its response to hepatitis B virus infection.

Dr Marcus Dorner, lead author from Imperial's School of Public Health, said: "This is the first time that organ-on-a-chip technology has been used to test viral infections. Our work represents the next frontier in the use of this technology. We hope it will ultimately drive down the cost and time associated with clinical trials, which will benefit patients in the long run."

Primary hepatocytes grown in 3-D microfluidic "liver-on-a-chip" platform following infection with hepatitis B virus. Credit: Marcus Dorner/Imperial College London

Hepatitis B virus is currently incurable, and affects over 257 million people worldwide. Development of a cure has been slow because there is no model system in which to test potential therapies.

However, the Imperial team showed that the liver-on-a-chip technology could be infected with hepatitis B virus at physiological levels and had similar biological responses to the virus as a real human liver, including immune cell activation and other markers of infection. In particular, this platform uncovered the virus's intricate means of evading inbuilt immune responses - a finding which could be exploited for future drug development.

Although this is in its early stages, the researchers suggest that it might eventually enable patients to have access to new types of personalised medicine. Rather than using generic lines, doctors in the future could potentially use cells from an actual patient and test how they would react to certain drugs for their infection, which may make treatments more targeted and effective.

Organs-on-chips house live human cells on scaffolds that are physiologically, mechanically, and structurally similar to the emulated organ. Drugs or viruses are passed through the cells via tubes that simulate blood flow through the body. The living cells used in tests last much longer on the chip than in traditional laboratory methods, and require lower infection doses compared to traditionally used model systems.

Microfluidic liver culture platform. Credit: CN Bio Innovations

Hepatitis B is very infectious and causes liver cancer and cirrhosis. Thus, the researchers say, it was the best virus to use for the first test as its interactions with the immune system and liver cells are complex, but with devastating consequences for the tissues.

Dr Dorner said: "Once we begin testing viruses and bacteria on other artificial organs, the next steps could be to drug interaction with the pathogens within the organ-on-chip environment."

Other organs-on-chips currently in use include the heart, kidneys, and lungs. The authors say using these for human pathogens could help researchers to better understand the mechanisms of infectious disease, and to observe how the and cells in the organ interact. This could lead to new drugs and treatments for a number of diseases affecting different organs in the future.

Explore further: Ebola virus infects reproductive organs in monkeys

More information: A. M. Ortega-Prieto et al, 3D microfluidic liver cultures as a physiological preclinical tool for hepatitis B virus infection, Nature Communications (2018). DOI: 10.1038/s41467-018-02969-8

Related Stories

Ebola virus infects reproductive organs in monkeys

February 8, 2018
Ebola virus can infect the reproductive organs of male and female macaques, according to a study published in The American Journal of Pathology, suggesting that humans could be similarly infected. Prior studies of survivors ...

Organs on microchips for safe drug testing

November 30, 2017
Miniaturized organs on a chip enable drug tests prior to application to humans. At Karlsruhe Institute of Technology (KIT), the team of Professor Ute Schepers has developed such an organ-on-a-chip system with accurately modeled ...

Gut-on-chip good predictor of drug side-effects

August 22, 2017
Research conducted at Leiden has established that guts-on-chips respond in the same way to aspirin as real human organs do. This is a sign that these model organs are good predictors of the effect of medical drugs on the ...

Starved T cells allow hepatitis B to silently infect liver

May 11, 2015
Hepatitis B stimulates processes that deprive the body's immune cells of key nutrients that they need to function, finds new UCL-led research funded by the Medical Research Council and Wellcome Trust.

Recommended for you

Lung-on-a-chip simulates pulmonary fibrosis

May 25, 2018
Developing new medicines to treat pulmonary fibrosis, one of the most common and serious forms of lung disease, is not easy.

Reconstructing Zika's spread

May 24, 2018
The urgent threat from Zika virus, which dominated news headlines in the spring and summer of 2016, has passed for now. But research into how Zika and other mosquito-borne infections spread and cause epidemics is still very ...

Tick bite protection: New CDC study adds to the promise of permethrin-treated clothing

May 24, 2018
The case for permethrin-treated clothing to prevent tick bites keeps getting stronger.

Molecular network boosts drug resistance and virulence in hospital-acquired bacterium

May 24, 2018
In response to antibiotics, a gene regulation network found in the bacterium Acinetobacter baumannii acts to boost both virulence and antibiotic resistance. Edward Geisinger of Tufts University School of Medicine and colleagues ...

Past use of disinfectants and PPE for Ebola could inform future outbreaks

May 24, 2018
Data from the 2014 Ebola virus outbreak at two Sierra Leone facilities reveal daily usage rates for disinfectant and personal protective equipment, informing future outbreaks, according to a study published May 24, 2018 in ...

Early lactate measurements appear to improve results for septic patients

May 24, 2018
On October 1, 2015, the United States Centers for Medicare and Medicaid Services (CMS) issued a bundle of recommendations defining optimal treatment of patients suffering from sepsis, a life-threatening response to infection ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.