Animal study reveals a skin itch receptor contributes to airway constriction

March 9, 2018, Johns Hopkins University
The researchers were inspired to study “itchiness” in the airway by asthma patients who reported the sensation in their lungs just prior to full-blown asthma symptoms such as wheezing. Credit: iStock

Working with mice, Johns Hopkins researchers report they have found previously known skin itch receptors in the airways that appear to contribute to bronchoconstriction and airway hypersensitivity, hallmarks of asthma and other respiratory disorders. The investigators' experiments in mice suggest that the receptors' activation directly aggravates airway constriction and—if the same process is active in people—may be a promising new target for the development of drug therapies.

In a report on the study, published Feb. 5 in Nature Neuroscience, researchers say the biochemical receptor, known as a G protein-coupled receptor, was present on nerve cells in the lower respiratory tracts of lab mice.

"The findings give us a fuller picture of what reactivity looks like," says Xinzhong Dong, Ph.D., professor of neuroscience at the Johns Hopkins University School of Medicine Institute for Basic Biomedical Sciences.

Dong said he and his team were inspired to study "itchiness" in the airway by patients who reported the sensation in their lungs just prior to full-blown asthma symptoms such as wheezing. Though he has been studying the G protein-coupled receptor on the skin for many years, Dong said he had not yet looked for it in other parts of the body.

Using fluorescent antibodies designed specifically to light up the receptor in mice, the investigators observed it on vagus nerves, which serve as a main biochemical connection between and the brain.

To explore the effects of the receptor on the airway, the researchers used a protein called BAM8-22, which is an itch activator that specifically targets the G protein-coupled receptor, to induce a reaction. They found that mice with the G protein-coupled receptor breathed more quickly and with more effort after exposure to the receptor activator than mice lacking it, evidence that the are activated before an asthma-like attack.

Currently, asthma treatments such as anticholinergics target the hypersensitive nerves that connect the brain to so-called parasympathetic neurons in the smooth muscle of the airway.

To investigate what, if any, role vagus neurons have in this system, Dong and his team repeated the experiments, while also activating the airway smooth muscles using acetylcholine—a neurotransmitter used throughout the nervous system to activate muscles. They found that stimulation of the G protein-coupled receptor increased airway constriction more than activating the airway smooth muscles alone.

The research team then infected specially bred mice carrying G and those without the receptor with an influenza virus—which is known to trigger asthma attacks in humans. When the researchers then administered acetylcholine to the mice through the nebulizer, they observed that mice with the G protein-coupled receptors reacted more vigorously than those with only smooth muscle reactions, and they also showed increased airway restriction compared to their counterparts without the receptor.

"We know that influenza stresses the respiratory system in humans. Through this test, we saw that in , activating our receptor made the reaction much, much worse," says Dong.

In the future, Dong hopes to identify a compound that can block the G protein-coupled receptor on vagus nerves as a means of stopping airway "itch" and curbing asthma.

Explore further: Researchers discover receptor that protects against allergies, asthma

More information: Liang Han et al. Mrgprs on vagal sensory neurons contribute to bronchoconstriction and airway hyper-responsiveness, Nature Neuroscience (2018). DOI: 10.1038/s41593-018-0074-8

Related Stories

Researchers discover receptor that protects against allergies, asthma

February 26, 2018
A special receptor on cells that line the sinuses, throat and lungs evolved to protect mammals from developing a range of allergies and asthma, according to a study from researchers at Johns Hopkins Bloomberg School of Public ...

New molecular target could help ease asthma

March 7, 2018
Researchers at UC Davis Health and Albany Medical College have shown that the protein vascular endothelial growth factor A—or VEGFA—plays a major role in the inflammation and airway obstruction associated with asthma.

New drug therapy could lead to more effective treatment for millions with asthma

February 7, 2018
Rutgers New Jersey Medical School researchers identified a new treatment that could lead to more effective drug therapy for millions of individuals with asthma and other respiratory disorders such as chronic obstruction pulmonary ...

Research team learns more about why airway closes up during asthma attacks

October 16, 2014
The molecular regulation of smooth-muscle contraction is an important determinant of airway responses during an acute asthmatic attack. In acute asthma, various triggers, including viral illnesses and aeroallergens, can cause ...

Study reveals nervous system's role in asthma attacks

July 22, 2014
(Medical Xpress)—Asthma is a debilitating condition that kills 250,000 people around the world each year. People with asthma have hyperreactive airways and thickened lung walls obstructed with mucus. During an asthma attack, ...

Receptor dynamics provide new potential for pharmaceutical developments

August 10, 2017
The dynamics among certain so-called G protein-coupled receptors, of vital importance for the function of cells in the body, are different than previously believed. This has been reported by researchers from Karolinska Institutet ...

Recommended for you

How do we lose memory? A STEP at a time, researchers say

March 23, 2018
In mice, rats, monkeys, and people, aging can take its toll on cognitive function. A new study by researchers at Yale and Université de Montréal reveal there is a common denominator to the decline in all of these species—an ...

Brain's tiniest blood vessels trigger spinal motor neurons to develop

March 23, 2018
A new study has revealed that the human brain's tiniest blood vessels can activate genes known to trigger spinal motor neurons, prompting the neurons to grow during early development. The findings could provide insights into ...

Being hungry shuts off perception of chronic pain

March 22, 2018
Pain can be valuable. Without it, we might let our hand linger on a hot stove, for example. But longer-lasting pain, such as the inflammatory pain that can arise after injury, can be debilitating and costly, preventing us ...

From signal propagation to consciousness: New findings point to a potential connection

March 22, 2018
Researchers at New York University have discovered a novel mechanism through which information can be effectively transmitted across many areas in the brain—a finding that offers a potentially new way of understanding how ...

Using simplicity for complexity—new research sheds light on the perception of motion

March 22, 2018
A team of biologists has deciphered how neurons used in the perception of motion form in the brain of a fly —a finding that illustrates how complex neuronal circuits are constructed from simple developmental rules.

Focus on early stage of illness may be key to treating ALS, study suggests

March 22, 2018
A new kind of genetically engineered mouse and an innovation in how to monitor those mice during research have shed new light on the early development of an inherited form of amyotrophic lateral sclerosis (ALS).


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.