Scientists locate nerve cells that enable fruit flies to escape danger

March 19, 2018, Columbia University
Down-and-back neurons (green) and nociceptive sensory neurons (red) in the ventral nerve cord of a fruit fly. Nerve bundles (blue) serve as an anatomical landmark. Credit: Anita Burgos/Grueber Lab/Columbia's Zuckerman Institute

Columbia University researchers have identified the nerve cells that initiate a fly's escape response: that complex series of movements in which an animal senses, and quickly maneuvers away from, something harmful such as high heat. These results, based on observations in fruit fly larvae, provide a window into a survival mechanism so important that it has persisted across evolutionary time, and today exists in virtually all animals—including in people. They also lend insight into conditions characterized by dysfunctions in this response, such as allodynia, in which gentle touch triggers the same reaction as exposure to something harmful.

The study was published this week in the journal eLife.

"Protecting ourselves from danger is a critical tool for survival that we employ all the time, whether it's yanking our hand away from a hot stovetop, or ducking our head to avoid a low ceiling," said neuroscientist Wesley Grueber, PhD, a principal investigator at Columbia's Mortimer B. Zuckerman Mind Brain Behavior Institute and the paper's senior author.

"These movements are quick, but complex, so teasing apart the brain activity that guides them has long proven difficult," he continued. "With today's findings, we can now confirm which nerve cells in flies orchestrate this process, bringing us closer to understanding the brain mechanisms that guide this essential behavior that evolved to keep us safe."

In broad terms, the steps that dictate a fly's escape can be divided into two parts: first the animal detects danger and then it reacts to it. Previous work found that specialized in the animal's sensory system, known as nociceptive , act as detectors, switching on in the presence of danger and alerting flies to make their escape, first by bending themselves into a c-shape and then rolling out of harm's way.

A fruit fly performs the bend-and-roll escape behavioral sequence. In this study, scientists identified a class of nerve cells, called down-and-back neurons, that initiate this behavior in response to dangerous stimuli. Credit: Anita Burgos/Grueber Lab/Columbia's Zuckerman Institute
"The question for us then became: How do these nociceptive neurons send information back to the brain, and how does this result in the animal's escape?" asked Anita Burgos, PhD, a postdoctoral researcher in the Grueber Lab and the paper's first author.

To find out, the team used a revolutionary technique known as electron microscopy (EM) reconstruction. EM reconstruction allows researchers to visualize the pathways that link different neurons—like tracing the route between two cities on a road map.

By following the route nociceptive neurons took toward the brain, the researchers saw that the neuronal branches all terminated in the same region of the ventral nerve cord (the fly equivalent of our spinal cord). Upon closer inspection, the team found that this region was largely home to one type of cell: down-and-back neurons, so named because of their curved shape.

This discovery offered strong evidence that down-and-back neurons may be the key to the fly's escape response. To confirm this, the researchers used genetics to manipulate the activity of down-and-back neurons, and observed their resulting behavior.

"When we switched on the down-and-back neurons, the flies performed the classic bend-and-roll escape even in the absence of harm," said Dr. Burgos. "But when we silenced those same neurons, the animals could still sense danger, but couldn't escape it. Their bodies wouldn't bend correctly; and were also unable to roll away. Somehow, down-and-back neurons were driving both of these behaviors—bending and rolling—almost simultaneously."

Down-and-back neuron (green), so named because of its curved shape. Credit: Anita Burgos/Grueber Lab/Columbia's Zuckerman Institute

Further experiments revealed how it worked. Upon receiving a danger signal from the nociceptive neurons, down-and-back neurons sent two sets of instructions to the animals' muscles—one that initiated the bend, and a second that initiated the roll. At first, it seemed counterintuitive for the same set of neurons to be in charge of driving two different types of movement.

"But in fact, the cellular activity we witnessed is an evolutionary solution for accomplishing the virtually limitless permutations of behaviors that animals can perform—a way for the brain to reuse the same neurons to perform different, but related, duties," said Dr. Grueber, who is also associate professor of physiology & cellular biophysics and neuroscience at Columbia University Irving Medical Center.

"Even in a very simple organism such as the fly, we're just beginning to understand how distinct movements are strung together into complex sequences," added Dr. Burgos, "This new study is a significant step towards understanding any complex behavior that is made up of simpler actions that are linked together in sequence, such as human speech."

The detailed mapping of brain circuits in this study may also provide insights into the mechanisms that guide the sensing abilities of other species, including people.

"This could ultimately be important for understanding how touch and pain are sensed separately, and how the two senses may become conflated in conditions such as allodynia, in which even the gentlest touch is interpreted as painful or dangerous," said Dr. Grueber.

Explore further: Midbrain 'start neurons' control whether we walk or run

More information: Anita Burgos et al, Nociceptive interneurons control modular motor pathways to promote escape behavior in Drosophila, eLife (2018). DOI: 10.7554/eLife.26016

Related Stories

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Scientists discover stem cells that build a fly's nervous system

January 25, 2018
Scientists at Columbia's Zuckerman Institute have uncovered new insights into how stem cells transform into brain cells that control leg movements. The surprising details of this process, observed in the brains of fruit flies, ...

Finding the tipping point for sleep

January 5, 2018
Sleep is essential for many aspects of normal life, but how we actually fall asleep remains a mystery.

Taste sensors in fly legs control feeding

February 22, 2016
Feeding is essential for survival. Senses such as smell or sight can help guide us to good food sources, but the final decision to eat or reject a potential food is controlled by taste. Scientists have examined the anatomy ...

Flashing neurons in worms reveal how the brain generates behavior

October 4, 2017
The 100 billion neurons of the human brain control our behavior, but so far there is no way to keep track of all that activity, cell by cell. Whole-brain imaging techniques like fMRI offer only a blurry view of the action, ...

Artificial intelligence helps build brain atlas of fly behavior

July 13, 2017
A smart computer program named JAABA has helped scientists create a brain-wide atlas of fruit fly behavior.

Recommended for you

Research shows signalling mechanism in the brain shapes social aggression

October 19, 2018
Duke-NUS researchers have discovered that a growth factor protein, called brain-derived neurotrophic factor (BDNF), and its receptor, tropomyosin receptor kinase B (TrkB) affects social dominance in mice. The research has ...

Scientists discover the region of the brain that registers excitement over a preferred food option

October 19, 2018
At holiday buffets and potlucks, people make quick calculations about which dishes to try and how much to take of each. Johns Hopkins University neuroscientists have found a brain region that appears to be strongly connected ...

Gene plays critical role in noise-induced deafness

October 19, 2018
In experiments using mice, a team of UC San Francisco researchers has discovered a gene that plays an essential role in noise-induced deafness. Remarkably, by administering an experimental chemical—identified in a separate ...

How clutch molecules enable neuron migration

October 19, 2018
The brain can discriminate over 1 trillion odors. Once entering the nose, odor-related molecules activate olfactory neurons. Neuron signals first accumulate at the olfactory bulb before being passed on to activate the appropriate ...

How the brain makes rapid, fine adjustments in motor activity

October 18, 2018
Short-term motor learning appears not to require physical change in the brain Brain's premotor cortex may use a 'neural scratch pad' to calculate fine adjustments Brain can try different things in simulation without 'screwing ...

Scientists uncover how rare gene mutation affects brain development and memory

October 18, 2018
Researchers from the University of California, Irvine School of Medicine, have found that a rare gene mutation alters brain development in mice, impairing memory and disrupting the communication between nerve cells. They ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.