Understanding how leukemia and lymphoma cells resist treatment

April 12, 2018 by Anne-Marie Beauregard, University of Montreal
Jennifer Fraszczak, Charles Vadnais, Riyan Chen et Tarik Möröy. Credit: IRCM

In a study published in Nature Communications, a team led IRCM Hematopoiesis and Cancer Research Unit director Tarik Möröy reveals how the GFI1 protein sometimes helps leukemia and lymphoma cancer cells evade therapy. This discovery could eventually help orient patients towards more effective treatment by considering the particular characteristics of their disease.

In this Q&A, Möröy and his team offer an overview of their findings.

What is this research project about?

One of our goals is to understand more precisely the mechanisms involved in the response to treatments designed for leukemia and lymphoma, two cancers linked to overproduction of . Although we understand the main mechanisms of these diseases, we are still missing many of their subtleties.

How do most cancer treatments work?

Cancer multiply quickly and in a way that is out of control; this is how tumours are formed. The goal of cancer treatments is to destroy these cells. In order to achieve this, doctors use radiotherapy and chemotherapy, which damage the DNA of the cancer cells, thereby destroying them or preventing them from multiplying.

In this study, we were interested in a protein that plays a role in the development of leukemia and lymphomas, the GFI1 protein. We already knew that it could affect the survival of cancer cells following treatments, but we did not understand how. We wanted to grasp GFI1's role in this dynamic. In order to accomplish this, we conducted experiments on mouse models and cultures of .

Why is it important to understand how these treatments work?

Thanks to scientific advances, therapeutic options such as radiation and chemotherapy are now available to stop leukemia and lymphoma, and they often lead to remission. However, these treatments can have severe side effects, and they sometimes prove to be ineffective. By gaining more knowledge about them, we could more effectively direct each patient to the therapy that best suits him or her. A personalized would increase the chances of success, while reducing unnecessary side effects.

What did your research reveal?

Our study shows that the GFI1 protein interacts with an enzyme, PRMT1, which, in turn, chemically modifies and activates proteins responsible for repairing DNA breaks. This new function for GFI1 is a new piece of the puzzle to understand how cells repair their DNA.

Ordinarily, GFI1 is necessary for the repair of . The problem is that GFI1 is often overexpressed in cancer cells: in these cases, GFI1 can help them resist certain treatments, since GFI1 helps to repair DNA breaks caused by radiotherapy or chemotherapy.

Could this study lead to therapeutic advances?

Ultimately, we hope this research will lead to even more effective decision-making in the clinical setting. For example, patients could be referred to the most appropriate treatment according to the level of GFI1 activity in their . It could also be possible to make tumours more sensitive to these treatments by targeting the mechanisms of DNA repair affected by GFI1.

Finally, we hope that the principles presented in this study will also be applicable to other types of tumours in which we suspect GFI1 to be involved, including such as medulloblastomas, the most common and most dangerous type of brain tumour in children. Sometimes scientific research appears to address a narrow field, but its repercussions can extend well beyond.

Explore further: Study suggests improved treatment alternative for lymphoid leukemia

Related Stories

Study suggests improved treatment alternative for lymphoid leukemia

February 11, 2013
Discovering what they call the "Achilles' heel" for lymphoid leukemia, an international research team has tested a possible alternative treatment that eradicated the disease in mouse models.

Overlooked DNA shuffling drives deadly paediatric brain tumour

June 23, 2014
One of the deadliest forms of paediatric brain tumour, Group 3 medulloblastoma, is linked to a variety of large-scale DNA rearrangements which all have the same overall effect on specific genes located on different chromosomes. ...

'Virtual tumours' predict success of tumour-heating sound waves

March 28, 2018
Researchers have developed a virtual, computerised cell model that is being used to predict the success of treating cancer with an exciting new tumour-heating technology – which uses targeted sound waves to heat and destroy ...

Targeting breast cancer through precision medicine

January 9, 2018
University of Alberta researchers have discovered a mechanism that may make cancer cells more susceptible to treatment. The research team found that the protein RYBP prevents DNA repair in cancer cells, including breast cancer.

Study explores impact of obesity on bone marrow cells

December 27, 2017
New research published in the Journal of Experimental Medicine highlights the pernicious effect of obesity on the long-term health of blood-making stem cells (hematopoietic stem cells).

Recommended for you

Mechanism that drives development of liver cancer brought on by non-alcoholic fatty liver disease discovered

April 19, 2018
A team of researchers from several institutions in China has found a mechanism that appears to drive the development of a type of liver cancer not caused by alcohol consumption. In their paper published in the journal Science ...

Discovery adds to evidence that some children are predisposed to develop leukemia

April 19, 2018
St. Jude Children's Research Hospital researchers have made a discovery that expands the list of genes to include when screening individuals for possible increased susceptibility to childhood leukemia. The finding is reported ...

Scientists identify 170 potential lung cancer drug targets using unique cellular library

April 19, 2018
After testing more than 200,000 chemical compounds, UT Southwestern's Simmons Cancer Center researchers have identified 170 chemicals that are potential candidates for development into drug therapies for lung cancer.

Chip-based blood test for multiple myeloma could make bone biopsies a relic of the past

April 19, 2018
The diagnosis and treatment of multiple myeloma, a cancer affecting plasma cells, traditionally forces patients to suffer through a painful bone biopsy. During that procedure, doctors insert a bone-biopsy needle through an ...

Study may explain why some triple-negative breast cancers are resistant to chemotherapy

April 19, 2018
Triple-negative breast cancer (TNBC) is an aggressive form of the disease accounting for 12 to 18 percent of breast cancers. It is a scary diagnosis, and even though chemotherapy can be effective as standard-of-care, many ...

Protein can slow intestinal tumor growth

April 19, 2018
A new mechanism for regulating stem cells in the intestine of fruit flies has been discovered by researchers at Stockholm University. In addition, it was discovered that a certain protein can slow the growth of tumours in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.