Study reveals a way to make prostate cancer cells run out of energy and die

April 3, 2018, Cold Spring Harbor Laboratory
Deguelin, an inhibitor of mitochondira in cells, can be used to target lethal prostate cancers lacking the gene PTEN. Left: cancerous mouse prostate cells glow green. Right: After 10 weeks of treatment with deguelin, only a few cancer cells remain. This compound and another called rotenone, kill cells missing PTEN but don't harm normal cells by exploiting cancer cells' dependency on glucose. Credit: Trotman Lab, CSHL

Scientists at Cold Spring Harbor Laboratory (CSHL) have discovered that cells lacking the tumor-suppressor protein PTEN—a feature of many cancers— are particularly vulnerable to drugs that impair their energy-producing mitochondria. Such drugs induce them to literally eat themselves to death, the research shows.

Unlike normal , cells without PTEN seem driven to preserve their mitochondria at all costs, says the team leader, CSHL Professor Lloyd Trotman. He and colleagues have found that when such cells are treated with certain mitochondrial inhibitors, they consume vast quantities of glucose to fuel these efforts. As a result, they quickly run out of energy and die.

Some mitochondrial inhibitors, including the widely prescribed diabetes medication metformin—one of the most widely taken drugs in the world—are already being evaluated in clinical trials for their ability to prevent or treat many types of cancer.

The new findings, reported today in Cell Reports, suggest that such drugs have the potential to eliminate at doses that leave intact. The timing is critical, however. When glucose levels are high, this window of opportunity is completely lost. "The hope is that carefully timed administration of these drugs can generate a much better window of selective killing," Trotman says.

Study reveals a way to make prostate cancer cells run out of energy and die
Left: nucleus (N) of a healthy cell, surrounded by networks of mitochondria, whose networks form spaghetti-like strands just outside the nucleus. Right: After treatment with mitochondrial inhibitor deguelin, mitochondria have fragmented and are now separated in the space between two cellular nuclei. Administered when glucose is low, such inhibitors effectively induce cancer cells to eat themselves to death. Normal cells survive. Credit: Trotman Lab, CSHL

Two related compounds, both derived from the root of the same plant, emerged from a screen performed by the team. Both killed cells missing PTEN and another tumor suppressor, p53. Loss of these together is common among men with advanced prostate cancer and is associated with highly metastatic disease.

The two drugs had little effect on nearly identical cells with functional PTEN. One, rotenone, is a known mitochondrial inhibitor. In collaboration with Navdeep Chandel at Northwestern University, Trotman's lab established that the second compound, deguelin, works in much the same way.

Oddly, further experiments with deguelin revealed that it shuts down mitochondrial function just as well in cells with PTEN as it does in cells that lack it. So why did cells with PTEN tolerate the toxic compound so much better?

The answer has to do with how cells use glucose, say co-first authors of the paper, postdoctoral researchers Adam Naguib and Grinu Mathew. They found that cells without PTEN use glucose from their environment to generate the energy-rich molecule ATP, which they import into mitochondria to keep them intact. "That's the exact opposite of what mitochondria are supposed to be doing," Trotman points out. "Mitochondria are supposed to generate ATP for the rest of the cell." For these cells lacking PTEN, unless there is an endless supply of glucose, they quickly use up the sugar and die.

Eventually, any cell subjected to mitochondrial inhibitors will run out of energy and die. Cells without PTEN just get there much faster, Trotman says. That means it could be critical to administer mitochondrial inhibitors to cancer patients when their blood sugar is low, he says. That's counter to how metformin and related medications are currently tested in , because the protocol used to manage diabetes calls for the drugs to be taken immediately after meals.

Explore further: Researchers identify 'Achilles' heel' of PTEN that helps drive prostate cancer progression

More information: Naguib A. et al, "Mitochondrial complex I inhibitors expose a vulnerability for selective killing of Pten-null cells" Cell Reports, April 3, 2018.

Related Stories

Researchers identify 'Achilles' heel' of PTEN that helps drive prostate cancer progression

February 13, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have discovered that a protein called Importin-11 protects the anti-cancer protein PTEN from destruction by transporting it into the cell nucleus. A study they publish today ...

Tests starve cancer cells while leaving normal cells unaffected

March 21, 2018
Scientists seeking to make chemotherapies which are less harmful to cancer patients have reported "highly promising" results from a synthetic molecule called TPP.

Study revises theory of how PTEN, a critical tumor suppressor, shuts off growth signals

April 9, 2015
The gene called PTEN is one of the most important of the body's natural tumor suppressors. When the gene is mutated or missing, as it is often observed to be in a host of cancers, growth signals affecting cells can get stuck ...

Why can't mTOR inhibitors kill cancer? Study explains

October 5, 2017
Anti-cancer drugs called mTOR inhibitors slow the growth of cancer cells but show limited ability to cause cancer cell death. New studies explain why.

Gene variant may provide novel therapy for several cancer types

June 7, 2013
(Medical Xpress)—A novel gene variant found in human and animal tissue may be a promising treatment for cancer, including breast and brain cancer, according to scientists from the Icahn School of Medicine at Mount Sinai. ...

Recommended for you

Research could help fine-tune cancer treatment

May 25, 2018
Cancer therapies that cut off blood supply to a tumour could be more effective in combination with existing chemotherapeutic drugs—according to new research from the University of East Anglia.

Increasing physical activity linked to better immunity in breast cancer patients, study finds

May 25, 2018
A new study from the University of Toronto's Faculty of Kinesiology & Physical Education has found that moderate to vigorous physical activity may help regulate the levels of C-reactive protein – an important biomarker ...

Fully reprogrammed virus offers new hope as cancer treatment

May 25, 2018
A cancer treatment that can completely destroy cancer cells without affecting healthy cells could soon be a possibility, thanks to research led by Cardiff University.

Study finds gut microbiome can control antitumor immune function in liver

May 24, 2018
Scientists have found a connection between bacteria in the gut and antitumor immune responses in the liver. Their study, published May 25 in Science, was led by researchers in the Center for Cancer Research (CCR) at the National ...

Low-fat diet tied to better breast cancer survival

May 24, 2018
(HealthDay)—Breast cancer patients who adopted a low-fat diet were more likely to survive for at least a decade after diagnosis, compared to patients who ate fattier fare, new research shows.

A cascade of immune processes offers insights to triple-negative breast cancer

May 24, 2018
Cancer is crafty. To survive and thrive, tumors find a way of thwarting our body's natural systems.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.