Researchers discover nerve repair mechanism

May 29, 2018, Asociacion RUVID

The research group of the Physiology Department of Elche's Universidad Miguel Hernández (UMH), Hugo Cabedo, has discovered how peripheral nerves induce the repair of the myelin sheath so that communication is properly restored following an injury. This finding could provide clues toward repairing the spinal cord.

Unlike what happens to the spinal cord after an injury, the have significant self-repair capabilities. After an injury, the nerve ending goes through a specialised biological process aimed at creating the required conditions to regenerate. However, it is a slow process that can occasionally go wrong. Understanding how this process works is important to reduce recovery time and take action when it is not happening appropriately.

Spontaneous repair of the peripheral nerves is possible thanks to Schwann cells, which cover the with an insulating layer of . This greasy layer protects nerves and increases the transmission speed of nerve impulses. The research group headed by UMH professor Hugo Cabedo has just discovered how the nerve (axon) induces the production of the myelin layer by the Schwann cell, so that communication is properly restored after damage.

Cabedo says, "Schwann cells play a very important role in the peripheral nervous system by way of a strictly regulated process of differentiation and dedifferentiation, a feature which no other nervous system cell has. This makes them very versatile, and allows them to go from a state in which they produce myelin, to another, less differentiated, in which they contribute towards repairing the damaged nerve."

When damage occurs to a peripheral nerve, such as the one that goes from the spine to the fingers or toes, the Schwann cells temporarily lose the ability to create myelin and go back to a previous developmental state. The objective of this transformation is to help the nerve regenerate and grow again to reach the target tissue. Once the nerve is repaired, the cell recovers its ability to produce myelin once again in order to cover the nerve with the insulating layer and lead to the proper transmission of .

In this process, as Cabedo's research team has discovered, a chemical messenger called cyclic AMP plays a vital role. Hugo Cabedo says, "Cyclic AMP sends a protein called histone deacetylase 4 to the nucleus of Schwann cells, which, once the nerve is repaired, restarts myelination. This is achieved by inactivating the c-Jun gene, which in standard conditions, blocks the production of myelin. Inactivation of the c-Jun gene is necessary and sufficient in order to activate the genes that produce myelin to cover the regenerated nerve."

This process makes it possible to spontaneously repair a nerve or, in some cases, to re-implant a severed finger, for example. "If you sever a peripheral nerve and the surgeon sews it back together properly, it ends up regenerating. Although the deteriorate, the Schwann cells, which are still present, turn into repair cells and help the nerve reach the target tissues once again. Once the nerve reaches its destination, the Schwann cell turns once again into a myelin producer to add the insulation layer. Unfortunately, in larger nerves, and the associated clinical evolution is not complete, which has lifelong consequences," said Cabedo. This finding can facilitate the treatment of peripheral injuries, such as those that take place in road accidents.

This work could contribute to the treatment of some diseases in which myelin is deteriorated, such as Charcot-Marie-Tooth, which has a genetic origin. It can also be relevant in relation to the Guillain-Barré syndrome, a neurological disorder that takes place following an infection, in which the immune system suddenly attacks the Schwann cells.

Explore further: Glial cells assist in the repair of injured nerves

Related Stories

Glial cells assist in the repair of injured nerves

January 28, 2013
When a nerve is damaged, glial cells produce the protein neuregulin1 and thereby promote the regeneration of nerve tissue.

Schwann cells 'dine in' to clear myelin from injured nerves

July 6, 2015
Researchers reveal how cells in the peripheral nervous system (PNS) degrade myelin after nerve injury, a process that fails to occur in the central nervous system (CNS). The study appears in The Journal of Cell Biology.

Scientists find RNA with special role in nerve healing process

August 22, 2017
Scientists may have identified a new opening to intervene in the process of healing peripheral nerve damage with the discovery that an "anti-sense" RNA (AS-RNA) is expressed when nerves are injured. Their experiments in mice ...

It takes a lot of nerve: Scientists make cells to aid peripheral nerve repair

August 6, 2015
Scientists at the University of Newcastle, UK, have used a combination of small molecules to turn cells isolated from human skin into Schwann cells - the specialised cells that support nerves and play a role in nerve repair. ...

Experimental therapy restores nerve insulation damaged by disease

February 12, 2018
When the body attacks its own healthy tissues in an autoimmune disease, peripheral nerve damage handicaps people and causes persistent neuropathic pain when insulation on healing nerves doesn't fully regenerate.

New research may pave the way for peripheral nerve damage repair

January 30, 2017
Research published today, 30th January 2017 online in the Journal of Cell Biology, has for the first time identified how a bodily protein allows nerves of the peripheral nervous system (PNS) to repair following injury.

Recommended for you

Wiring diagram of the brain provides a clearer picture of brain scan data

December 14, 2018
Already affecting more than five million Americans older than 65, Alzheimer's disease is on the rise and expected to impact more than 13 million people by 2050. Over the last three decades, researchers have relied on neuroimaging—brain ...

Scientists identify method to study resilience to pain

December 14, 2018
Scientists at the Yale School of Medicine and Veterans Affairs Connecticut Healthcare System have successfully demonstrated that it is possible to pinpoint genes that contribute to inter-individual differences in pain.

Parents' brain activity 'echoes' their infant's brain activity when they play together

December 13, 2018
When infants are playing with objects, their early attempts to pay attention to things are accompanied by bursts of high-frequency activity in their brain. But what happens when parents play together with them? New research, ...

In the developing brain, scientists find roots of neuropsychiatric diseases

December 13, 2018
The most comprehensive genomic analysis of the human brain ever undertaken has revealed new insights into the changes it undergoes through development, how it varies among individuals, and the roots of neuropsychiatric illnesses ...

Researchers find the cause of and cure for brain injury associated with gut condition

December 13, 2018
Using a mouse model of necrotizing enterocolitis (NEC)—a potentially fatal condition that causes a premature infant's gut to suddenly die—researchers at Johns Hopkins say they have uncovered the molecular causes of the ...

Researchers discover abundant source for neuronal cells

December 13, 2018
USC researchers seeking a way to study genetic activity associated with psychiatric disorders have discovered an abundant source of human cells—the nose.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.