New method for cell identification leads to discovery of melanoma subtypes

June 12, 2018 by David Gleich, Purdue University
The ACTION framework consists of five main steps. Credit: Purdue University

Cells have traditionally been categorized into different types, such as T-cells and B-cells, based on observable features. But new research published in Nature Communications shows cells are far more complex.

Purdue University researchers created an algorithm called ACTION to group based on their primary and pinpoint the genes responsible for those functions. They also discovered a new subtype of melanoma, a form of skin cancer, which could lead to opportunities for more personalized therapies.

"We can interpret cells as types, but we should really think of them in terms of their functions," said David Gleich, an associate professor of computer science at Purdue. "They're not all purely one type. For example, our measurements can tell us if a cell is performing 80 percent one function and 20 percent another."

Not only is there variation in tasks performed by in one region, but cells also behave differently in different scenarios. Cells behave differently around a tumor than they would other places in the body, Gleich said. This information can be measured with high-resolution gene expression readings of individual cells.

The ACTION framework helps break down this information and fully characterize the functional profile of a cell. It has three major components: identifying the functional identity of cells, classifying them based on their dominant function, and reconstructing regulatory networks responsible for mediating their identity.

The newly uncovered subtypes of melanoma have different survival rates and therapeutic responses than standard melanoma. Factors that mediate cell function and switches that turn functions on and off were identified for these new subtypes, providing new biomarkers and potentially targets for future drugs.

"Our understanding of how human biology works is continuously evolving, and every time we get access to more refined data, we need new methods to help us refine our understanding," Gleich said. "Using a program like ACTION, we could acquire a functional landscape of cells for each person, which would allow us to do micro-targeting and really embrace the idea of precision medicine."

Explore further: Discovery of four subtypes of melanoma points to new treatment approaches

More information: Shahin Mohammadi et al. A geometric approach to characterize the functional identity of single cells, Nature Communications (2018). DOI: 10.1038/s41467-018-03933-2

Related Stories

Discovery of four subtypes of melanoma points to new treatment approaches

April 12, 2018
Melanoma, a relatively rare but deadly skin cancer, has been shown to switch differentiation states—that is, to regress to an earlier stage of development—which can lead it to become resistant to treatment. Now, UCLA ...

Lymphatic endothelial cells promote melanoma to spread

May 1, 2018
The lymph vessel endothelial cells play an active role in the spread of melanoma, according to the new study conducted at the University of Helsinki. The researchers found that growing human melanoma cells in co-cultures ...

Shifting protein networks in breast cancer may alter gene function

November 30, 2017
A given gene may perform a different function in breast cancer cells than in healthy cells due to changes in networks of interacting proteins, according to a new study published in PLOS Computational Biology.

Scientists identify novel therapeutic targets for metastatic melanoma

November 27, 2017
Mount Sinai researchers have identified novel therapeutic targets for metastatic melanoma, according to a study published in Molecular Cell.

Recommended for you

Some brain tumors may respond to immunotherapy, new study suggests

December 10, 2018
Immunotherapy has proved effective in treating a number of cancers, but brain tumors have remained stubbornly resistant. Now, a new study suggests that a slow-growing brain tumor arising in patients affected by neurofibromatosis ...

Study finds higher risk of breast cancer for women after giving birth

December 10, 2018
Younger women who have recently had a child may have a higher risk of breast cancer than their peers of the same age who do not have children, according to a large-scale analysis co-led by a University of North Carolina Lineberger ...

A code for reprogramming immune sentinels

December 10, 2018
For the first time, a research team at Lund University in Sweden has successfully reprogrammed mouse and human skin cells into immune cells called dendritic cells. The process is quick and effective, representing a pioneering ...

Researchers develop personalized medicine tool for inherited colorectal cancer syndrome

December 10, 2018
An international team of researchers led by Huntsman Cancer Institute (HCI) at the University of Utah (U of U) has developed, calibrated, and validated a novel tool for identifying the genetic changes in Lynch syndrome genes ...

Study shows key enzyme linked to therapy resistance in deadly lung cancer

December 10, 2018
Researchers at The University of Texas MD Anderson Cancer Center have identified a link between an enzyme tied to cancer formation and therapy resistance in patients with epidermal growth factor receptor (EGFR)-mutant non-small ...

Potential seen for tailoring treatment for acute myeloid leukemia

December 8, 2018
Advances in rapid screening of leukemia cells for drug susceptibility and resistance are bringing scientists closer to patient-tailored treatment for acute myeloid leukemia (AML).

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.