Neuroscientists locate neurons in the brain that respond when a visual target is found

June 14, 2018, California Institute of Technology
neuroscientists locate neurons in the brain that respond when a visual target is found
If not for copyright protections, this image would have been a cartoon drawing featuring a certain man in a red and white striped sweater hidden somewhere in the crowd. If you had been able to find him, you would have specific neurons in your brain to thank. Credit: Creative Commons/CC0

From looking for Waldo to finding your cellphone on a cluttered kitchen table, we are continuously engaged in visual searches. How does the brain do this? How do we know where to look? How do we know when we've found what we are looking for? For the first time, neuroscientists from Caltech have found neurons in the human brain that respond when our targets are spotted. The research involved a collaboration with scientists at Cedars-Sinai Medical Center in Los Angeles, where the data were collected, and West Virginia University.

Writing in the latest issue of the journal Current Biology, the team describes how they recorded the activity of individual visual-targeting in patients with electrodes implanted in their brains for epilepsy treatment. Piggybacking on this unique clinical setup, the researchers had patients search for target images within other pictures—similar to how someone looks for Waldo in the Where's Waldo? books. While they were recording neural activity, they also tracked the patients' eye movements, so they could tell exactly which part of the image the patients were looking at.

When the patient found the target objects, neurons were activated in two areas of the : the medial temporal lobe, a region known to be involved in memory and object recognition, and the , a region known to be involved in control and decision-making.

"This was the first discovery of cells in the human brain that respond just when you look at a visual target," explains the study's lead author, Shuo Wang (Ph.D. '14), who was a graduate student in Caltech's Computation & Neural Systems program and subsequently a postdoctoral fellow at Caltech when the experiments were done. He is now an assistant professor at West Virginia University.

While a few studies had previously found such neurons in the temporal cortex of monkeys, the experiment had never been done in a human subject. The researchers also found that the neurons in the medial temporal lobe responded about 200 milliseconds later than those in the medial frontal cortex.

"This difference supports the hypothesis that the frontal cortex first detects that a target has been found, and then feeds that signal down to the medial temporal lobe," says Ueli Rutishauser (Ph.D. '08), the senior author on the study in whose laboratory at Cedars-Sinai Medical Center the data were collected. "This points us to specific circuits in the brain involved in the processes required for visual search."

The same team of authors had previously found cells in the medial temporal lobe that encode specific object categories, such as faces, and the present findings add to that prior work.

"We found two distinct populations of neurons in the medial temporal lobe. One population, which we already knew about, recognizes objects in terms of their appearance—for instance, whether something is a face or not," says paper co-author Ralph Adolphs (Ph.D. '93), Caltech's Bren Professor of Psychology, Neuroscience, and Biology; the Allen V. C. Davis and Lenabelle Davis Leadership Chair; and director of the Caltech Brain Imaging Center." A second population, first discovered in this experiment, recognizes objects not in terms of their appearance, but in terms of their goal-directed relevance: whether this was something we were searching for or not, regardless of how it looks."

The scientists say these findings are just the beginning of important work to explain how all these different brain regions work together. A particular strength of the study, they say, was the ability to record target neurons in both the medial temporal lobe and the medial frontal cortex, and the question now is exactly how these brain regions communicate with one another during a visual search task. Impairments in this circuit may underlie some of the attentional impairments that are seen in disorders such as schizophrenia.

An additional co-author on the paper, "Encoding of detection during visual search by single neurons in the human brain," is Adam Mamelak, a neurosurgeon at Cedars-Sinai Medical Center and longtime collaborator with the team.

Explore further: Researchers identify human brain processes critical to short-term memory

More information: Current Biology (2018). DOI: 10.1016/j.cub.2018.04.092 , http://resolver.caltech.edu/CaltechAUTHORS:20180613-131559795

Related Stories

Researchers identify human brain processes critical to short-term memory

February 20, 2017
Cedars-Sinai neuroscientists have uncovered processes involved in how the human brain creates and maintains short-term memories.

New study uncovers brain's code for pronouncing vowels

August 21, 2012
(Medical Xpress) -- Scientists have unraveled how our brain cells encode the pronunciation of individual vowels in speech. The discovery could lead to new technology that verbalizes the unspoken words of people paralyzed ...

Been there? Done that? If you are sure, thank your 'memory cells'

June 9, 2015
The witness on the stand says he saw the accused at the scene of the crime. Is he sure? How sure? The jury's verdict could hinge on that level of certainty.

Neurons see what we tell them to see

September 26, 2014
Neurons programmed to fire at specific faces—such as the famously reported "Jennifer Aniston neuron"—may be more in line with the conscious recognition of faces than the actual images seen. Subjects presented with a blended ...

Neuroscientists record novel responses to faces from single neurons in humans

September 29, 2011
Responding to faces is a critical tool for social interactions between humans. Without the ability to read faces and their expressions, it would be hard to tell friends from strangers upon first glance, let alone a sad person ...

Recommended for you

New study finds 'timing cells' in the brain may underlie an animal's inner clock

October 23, 2018
Are you taking your time when feeding your pet? Fluffy and Fido are on to you—and they can tell when you are dawdling.

Neurons reliably respond to straight lines

October 23, 2018
Single neurons in the brain's primary visual cortex can reliably detect straight lines, even though the cellular makeup of the neurons is constantly changing, according to a new study by Carnegie Mellon University neuroscientists, ...

Scientists reveal new details of how a naturally occurring hormone can boost memory in aging mice

October 23, 2018
A Columbia study in mice has revealed new details of how a naturally occurring bone hormone reverses memory loss in the aging brain. These findings about the hormone, called osteocalcin, stand to spur further investigations ...

Mutation in common protein triggers tangles, chaos inside brain cells

October 23, 2018
A pioneer in the study of neural cells revealed today (Oct. 23, 2018) how a single mutation affecting the most common protein in a supporting brain cell produces devastating, fibrous globs. These, in turn, disturb the location ...

Nerve-on-a-chip platform makes neuroprosthetics more effective

October 23, 2018
EPFL scientists have developed a miniaturized electronic platform for the stimulation and recording of peripheral nerve fibers on a chip. By modulating and rapidly recording nerve activity with a high signal-to-noise ratio, ...

The smell of lavender is relaxing, science confirms

October 23, 2018
Lavender works its relaxing magic all around us: from garden borders to bath bombs to fabric softener. But why not in our hospitals and clinics? And what is the science behind the magic?

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.