Proteins found in semen increase the spread of Ebola virus infection

June 25, 2018, Perelman School of Medicine at the University of Pennsylvania
Ebola virus particles (red) on a larger cell. Credit: NIAID

Protein fragments, called amyloid fibrils, in human semen significantly increase Ebola virus infection and protect the virus against harsh environmental conditions such as heat and dehydration. Researchers from the Perelman School of Medicine at the University of Pennsylvania report these findings in a study published this week in the Proceedings of the National Academy of Sciences (PNAS).

Although Ebola is transmitted primarily through direct contact with blood and other bodily fluids from infected people, follow-up studies from the 2014 epidemic found that men can harbor the in their for at least 2.5 years, with the potential to transmit the virus sexually during that time. The Penn team surmises that targeting amyloids in semen could prevent a sexually transmitted spread of the Ebola virus.

"Sexual of the Ebola virus poses a significant public health concern, especially in light of the ongoing Ebola outbreak in the Democratic Republic of the Congo," said senior author Paul Bates, Ph.D., a professor of Microbiology.

Sexual transmission has also been linked to a resurgence of Ebola in Guinea, which had previously been declared Ebola-free during the West Africa Ebola outbreak. However, the role of host factors involved in sexual transmission has remained poorly understood. Strategies for countering amyloids, such as creating small molecules that disrupt its structure, have been developed to slow or halt HIV transmission. The researchers suggest that this approach could be tested for its ability to reduce in models of Ebola sexual transmission.

Several types of amyloids found in semen enhance the transmission and infection of other viruses, such as HIV, by helping the virus attach to the membrane surrounding host cells. In a previous study, James Shorter, Ph.D., an associate professor of Biochemistry and Biophysics and co-author on the PNAS study, identified how yeast heat shock proteins and a small molecule called CLR01 could disrupt the formation of fibrils found in semen to make human immune cells less likely to be infected with HIV. Stephen Bart, Ph.D., a postdoctoral fellow in the Bates lab and first author of the PNAS study, applied what he learned on the HIV study to investigate the details of sexual transmission of the Ebola virus.

To test the ability of amyloids to enhance infection, benign viruses with the distinctive Ebola glycoprotein (a marker on the outside of the virus particle) were incubated with physiological concentrations of semen amyloids before infecting a variety of human cell types including macrophages, a primary target of Ebola virus in humans. Infection levels of cells with this benign Ebola virus and amyloids were about 20 times higher compared to cells with the virus alone.

Coauthors Courtney Cohen and John M. Dye from the Virology Division of the U.S. Army Medical Research Institute of Infectious Diseases found similar results using live Ebola in Biosafety Level 4 facilities in Frederick, MD.

The team also found that amyloids enhanced the binding of the virus to cells and increased its ability to be internalized by host . The fibrils working within semen significantly altered the physical properties of the virus, making it better able to survive in internal body environments of high temperature and less moisture.

"Given the potential for to spark new Ebola infection chains, we feel we have found relevant factors that may be important targets for inhibiting the spread of Ebola," said Bart.

The team's next steps are to determine if the amyloids have an effect on Ebola in models of vaginal infection and if compounds that disrupt the amyloids are protective. Additionally they plan to analyze amyloids found in other sites, such as the human gut, to see if they play a role in other types of viral infections.

Explore further: Ebola virus infects reproductive organs in monkeys

More information: Stephen M. Bart el al., "Enhancement of Ebola virus infection by seminal amyloid fibrils," PNAS (2018). www.pnas.org/cgi/doi/10.1073/pnas.1721646115

Related Stories

Ebola virus infects reproductive organs in monkeys

February 8, 2018
Ebola virus can infect the reproductive organs of male and female macaques, according to a study published in The American Journal of Pathology, suggesting that humans could be similarly infected. Prior studies of survivors ...

Ebola detected in semen of survivors two years after infection

August 2, 2017
Ebola virus RNA can persist in the semen of survivors more than two years after the onset of infection researchers at the University of North Carolina at Chapel Hill have found. The research team, which included investigators ...

Ebola virus exploits host enzyme for efficient entry to target cells

February 7, 2018
Researchers have identified a key process that enables the deadly Ebola virus to infect host cells, providing a novel target for developing antiviral drugs. The Ebola virus incorporates a cellular enzyme into its virus particles, ...

Researchers inhibit Ebola virus

December 29, 2017
The incurable Ebola virus has long been feared due to its high mortality rate and danger of infection. Now researchers from the University of Copenhagen and Phillips Universität Marburg have succeeded in inhibiting the virus ...

Sperm can carry Ebola for 82 days: WHO

November 28, 2014
Sperm can carry the Ebola virus for at least 82 days, the World Health Organization said Friday, urging men recovering from the disease to use condoms for three months after the onset of symptoms.

Recommended for you

Researchers a step closer to understanding how deadly bird flu virus takes hold in humans

November 19, 2018
New research has taken a step towards understanding how highly pathogenic influenza viruses such as deadly bird flu infect humans.

Infants born to obese mothers risk developing liver disease, obesity

November 16, 2018
Infant gut microbes altered by their mother's obesity can cause inflammation and other major changes within the baby, increasing the risk of obesity and non-alcoholic fatty liver disease later in life, according to researchers ...

New study shows NKT cell subsets play a large role in the advancement of NAFLD

November 16, 2018
Since 2015 it has been known that the gut microbiota could have a direct impact on nonalcoholic fatty liver disease (NAFLD), which affects up to 12% of adults and is a leading cause of chronic liver disease. In the November ...

Antibiotic prescribing influenced by team dynamics within hospitals

November 15, 2018
Antibiotic prescribing by doctors is influenced by team dynamics and cultures within hospitals.

Discovery suggests new route to fight infection, disease

November 14, 2018
New research reveals how a single protein interferes with the immune system when exposed to the bacterium that causes Legionnaires' disease, findings that could have broad implications for development of medicines to fight ...

New research aims to help improve uptake of hepatitis C testing

November 14, 2018
New research published in Scientific Reports shows persisting fears about HIV infection may impact testing uptake for the hepatitis C Virus (HCV).

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.