Scientists discover biomarker for flu susceptibility

June 13, 2018, Stanford University Medical Center
Credit: CC0 Public Domain

Researchers at the Stanford University School of Medicine have found a way to predict whether someone exposed to the flu virus is likely to become ill.

Purvesh Khatri, Ph.D., associate professor of medicine and of biomedical data science, and his team used a computational approach to pinpoint a blood-based genetic biomarker to determine an individual's susceptibility to the disease.

"We've been after this for about four years," Khatri said. "To our knowledge, it's the first biomarker that shows susceptibility to influenza, across multiple strains."

The biomarker is a gene called KLRD1, and it essentially acts as a proxy for the presence of a special type of immune cell that may be a key to stamping out nascent flu infection. Put simply: the more of this cell type found in a person's blood, the lower their flu susceptibility. The research even hints at new avenues for pursuing a broadly applicable flu vaccine.

A paper describing the work will be published online June 14 in Genome Medicine. Khatri is the senior author. Graduate student Erika Bongen is the lead author.

The secret's in the cell type

At the start of their study, Khatri and his group ran gene expression analyses that sifted through the collection of human genes, looking for a sign that one might be particularly important for fighting off the flu. But the sheer number of genes in a small number of samples overshadowed any potential signal, so Khatri turned to a different approach that repurposed immune cell data collected from more than 150 studies that monitored gene expression in the immune cells of more than 6,000 samples.

"The idea was, instead of looking at 20,000 variables [or genes], let's bring it down to 20—let's only look at 20 immune cell types and see if any of these show a consistent pattern in regard to H1N1 or H3N2 flu infection, and then we'll look at genes that are related to that cell type only," Khatri said. "And that turned out to be the answer."

Using a computational approach developed in his lab, Khatri and his team parsed the identity and proportion of cells present in participants of two studies—one conducted at Harvard University, the other at Duke University—comprising a total of 52 individuals who volunteered to sniff up live influenza in the name of science. The researchers were looking only at types of immune cells present in each individual just before they were infected with the flu.

"We found that a type of immune cell called a natural killer cell was consistently low at baseline in individuals who got infected," Bongen said. Those who had a higher proportion of natural killer cells had better immune defenses and fought off illness.

"So we asked, 'What are the that represent natural killer cells?' And there turned out to be this one gene, KLRD1, that seemed to be a good target," Bongen said.

Old data, new tricks

KLRD1, when expressed, manifests as a receptor on the surface of natural killer cells. KLRD1 is basically a counting chip. When the score was tallied, Khatri saw that, on the whole, those whose consisted of 10-13 percent natural killers did not succumb to the flu, whereas those whose natural killer cells fell short of 10 percent wound up ill. It's a fine line, Khatri said, but the distinction between the groups is quite clear: Everyone who had 10 percent or more natural killer cells stood strong against the infection and showed no symptoms.

Khatri said his findings could help health professionals understand who's at the highest risk for flu infection. "If, for example, there's a flu epidemic going on, and Tamiflu supplies are limited, this data could help identify who should be prophylactically treated first," Khatri said.

Khatri emphasizes that for now, the link between KLRD1 levels and influenza susceptibility is only an association. The next step, he said, is to find the mechanism.

"It will be crucial to understand the role of natural killer ' protection so that we can potentially leverage that in designing better flu vaccines," he said. "Since we see that are protective across different strains, maybe that would be a path to a universal flu vaccine."

More broadly, Khatri said that this research exemplifies the power of "data repurposing."

"Our work shows how you can use data that exists from previous studies to answer questions that those studies alone would not have been able to answer," Khatri said. "But by aggregating the data, we were able to find a signal across both studies and use that to discover something new."

Explore further: Viral infections leave a signature on human immune system, study finds

Related Stories

Viral infections leave a signature on human immune system, study finds

December 15, 2015
A team of immunologists and informatics experts at the Stanford University School of Medicine has identified a distinctive pattern of gene expression that distinguishes people with a viral infection from those with a bacterial ...

Measuring immune response could be key to differentiating malaria from other infections

April 25, 2017
Analysing a patient's immune response could be key to quickly and accurately diagnosing malaria, according to research presented on World Malaria Day at the 27th European Congress of Clinical Microbiology and Infectious Diseases ...

Key differences in young, older people's immune cells attributed to environment

April 26, 2018
Discoveries by Stanford University School of Medicine investigators may help explain why older people's immune systems often don't work so well, why different people's immune systems age at different rates, and why the environment ...

Gene activity predicts progression of autoimmune disease, researchers find

December 22, 2016
Researchers at the Stanford University School of Medicine and six other institutions have designed a new diagnostic tool for a rare and deadly autoimmune disease that affects the skin and internal organs.

Flu shots not a magic bullet for the elderly—and new research helps to explain why

April 4, 2018
Elderly people who find their annual flu shot is not helping them beat the virus may be lacking in effective natural killer cells, according to new research.

Blood test could transform tuberculosis diagnosis, treatment in developing countries

February 19, 2016
A simple blood test that can accurately diagnose active tuberculosis could make it easier and cheaper to control a disease that kills 1.5 million people every year.

Recommended for you

Critical role of DHA on foetal brain development revealed

August 17, 2018
Duke-NUS researchers have found evidence that a natural form of Docosahexaenoic Acid (DHA) made by the liver called Lyso-Phosphatidyl-Choline (LPC-DHA), is critical for normal foetal and infant brain development, and that ...

New algorithm could improve diagnosis of rare diseases

August 17, 2018
Today, diagnosing rare genetic diseases requires a slow process of educated guesswork. Gill Bejerano, Ph.D., associate professor of developmental biology and of computer science at Stanford, is working to speed it up.

Gene silencing critical for normal breast development

August 17, 2018
Researchers have discovered that normal breast development relies on a genetic 'brake', a protein complex that keeps swathes of genes silenced.

Officials remove special rules for gene therapy experiments

August 16, 2018
U.S. health officials are eliminating special regulations for gene therapy experiments, saying that what was once exotic science is quickly becoming an established form of medical care with no extraordinary risks.

Genetic link discovered between circadian rhythms and mood disorders

August 15, 2018
Circadian rhythms are regular 24-hour variations in behaviour and activity that control many aspects of our lives, from hormone levels to sleeping and eating habits.

Ovarian cancer genetics unravelled

August 14, 2018
Patterns of genetic mutation in ovarian cancer are helping make sense of the disease, and could be used to personalise treatment in future.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.