Scientists eradicate cancer cells through dual targeting of DNA repair mechanisms

June 12, 2018, Temple University
A depiction of the double helical structure of DNA. Its four coding units (A, T, C, G) are color-coded in pink, orange, purple and yellow. Credit: NHGRI

Proteins commonly known as BRCA—short for BReast CAncer susceptibility gene- serve a critical role in cellular DNA repair, but when mutated they allow genetic errors to replicate, facilitating cancer development. If the BRCA repair system is disabled in cancer cells, the cells simply turn to backup repair mechanisms and adapt to alternative repair pathways, a survival mode that also underlies their ability to evade targeted drug therapies.

Now, new research by scientists at the Lewis Katz School of Medicine at Temple University (LKSOM) shows that it is possible to eliminate at least two backup repair mechanisms at the same time using two targeted therapies. The strategy effectively narrows down the number of secondary repair pathways available, helping to ensure cell eradication.

The novel approach, described June 12 in a paper published in Cell Reports, is named dual synthetic lethality, so-called because cancer cell death is induced by two drugs targeting distinct DNA repair pathways at the same time. "Cancers cells have multiple ways of protecting themselves from death," explained senior investigator Tomasz Skorski, MD, Ph.D., Professor of Microbiology and Immunology and Associate Professor at the Fels Institute for Cancer Research and Molecular Biology at LKSOM.

Tumor cells that carry BRCA-deficiency mutations frequently rely on DNA repair mediated by a protein known as PARP1. Clinically, PARP1 inhibition can significantly improve progression-free survival in patients with cancers involving hereditary BRCA mutations.

Over time, however, the effectiveness of PARP1 inhibition declines, and cancer relapses. According to Dr. Skorski, this happens because targeting one pathway is not enough. "The cells eventually escape PARP1 inhibition by activating another backup to the BRCA-mediated repair pathway," he said. "Our previous work had suggested that RAD52-dependent pathways are a likely escape route, which led us to see whether simultaneous inhibition of both PARP1 and RAD52 could trigger more effective lethality."

Dr. Skorski's team first tested their idea in a series of experiments in BRCA-deficient solid tumor and leukemia cell lines in vitro. Using an experimental RAD52 inhibitor, they were able to show that RAD52 blockade enhanced synthetic lethal effects in cells treated with the PARP inhibitor olaparib, a drug approved by the Food and Drug Administration. For all tumor types, the dual treatment completely eradicated BRCA-deficient tumor cells.

The simultaneous targeting strategy was then tested against BRCA-deficient tumors in mice, in which the researchers recapitulated the effects of BRCA deficiency in breast cancer and in acute and chronic myelogenous leukemia. They found that dual inhibition exerted strong effects against tumors in vivo, showing greater activity than either agent alone.

Importantly, the teams' experiments showed, both in vitro and in vivo, that normal cells, with normal BRCA activity, are unaffected by the dual treatment. "Normal cells continue to use BRCA-mediated repair as their primary DNA repair and do not rely heavily on PARP1 or RAD52," explained Katherine Sullivan-Reed, a graduate student in Dr. Skorski's research laboratory and first author on the new paper. Leaving normal relatively unharmed helps limit the severity of side effects patients may experience with targeted cancer therapy.

The new research provides a foundation for pursuing the development of a clinically viable drug to inhibit RAD52, as well as the development of a screening test specifically for patients who carry tumors displaying BRCA-deficiency.

In the near-term, Dr. Skorski's team also plans to continue investigating alternative DNA pathways, which are essential for but expendable in . "One of our primary goals is to find additional targets to kill , without increasing toxicity," he added.

Explore further: Small molecule inhibitor shows promise in precision cancer targeting

More information: Cell Reports (2018). DOI: 10.1016/j.celrep.2018.05.034

Related Stories

Small molecule inhibitor shows promise in precision cancer targeting

November 5, 2015
Cancer cells with mutations in BRCA1 or BRCA2 genes, which serve a vital role in preserving the integrity of the genetic code, are key targets for cancer therapeutics. Yet, few agents can selectively eliminate cells deficient ...

Novel combination therapy shown to be effective in ovarian cancer

December 19, 2017
Researchers at The Wistar Institute have found that combining PARP inhibitors, recently approved for the treatment of BRCA-mutant ovarian cancer, with another small molecule inhibitor was effective to treat ovarian cancers ...

Scientists identify cause of resistance to breakthrough breast and ovarian cancer drug

May 10, 2018
Scientists have identified a mutation that gives cancer cells resistance to the breakthrough cancer treatment olaparib and other PARP inhibitors.

Ovarian cancer drug shows promise in pancreatic cancer patients with BRCA mutation

May 17, 2018
A targeted therapy that has shown its power in fighting ovarian cancer in women including those with BRCA1 and BRCA2 mutations may also help patients with aggressive pancreatic cancer who harbor these mutations and have few ...

PARP inhibitor may be effective against some TNBC lacking BRCA mutations

November 1, 2017
The investigational PARP inhibitor talazoparib caused regression of patient-derived xenografts (PDXs) of triple-negative breast cancers (TNBC) that had BRCA mutations and also those that did not have BRCA mutations but had ...

FDA approves first drug for tumors tied to breast cancer genes

January 12, 2018
(HealthDay)—The U.S. Food and Drug Administration on Friday approved the first drug aimed at treating metastatic breast cancers linked to the BRCA gene mutation.

Recommended for you

A 150-year-old drug might improve radiation therapy for cancer

October 17, 2018
A drug first identified 150 years ago and used as a smooth-muscle relaxant might make tumors more sensitive to radiation therapy, according to a recent study led by researchers at The Ohio State University Comprehensive Cancer ...

Study involving hundreds of patient samples may reveal new treatment options of leukemia

October 17, 2018
After more than five years and 672 patient samples, an OHSU research team has published the largest cancer dataset of its kind for a form of leukemia. The study, "Functional Genomic Landscape of Acute Myeloid Leukemia", published ...

Loss of protein p53 helps cancer cells multiply in 'unfavourable' conditions

October 17, 2018
Researchers have discovered a novel consequence of loss of the tumour protein p53 that promotes cancer development, according to new findings in eLife.

New method uses just a drop of blood to monitor lung cancer treatment

October 17, 2018
Dr. Tasuku Honjo won the 2018 Nobel Prize in physiology or medicine for discovering the immune T-cell protein PD-1. This discovery led to a set of anti-cancer medications called checkpoint inhibitors, one of the first of ...

Gene screening technique helps identify genes involved in a fatty liver-associated liver cancer

October 17, 2018
With an estimated twenty-thousand protein-coding genes in the human genome, pinpointing a specific gene or pathway responsible for a particular disease can be like finding a needle in the proverbial haystack. This has certainly ...

Scientists zero in on ways to boost colorectal cancer screening

October 17, 2018
A comprehensive analysis by University of North Carolina Lineberger Comprehensive Cancer Center researchers evaluated more than 70 clinical studies to identify some of the most effective methods for boosting U.S. colorectal ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.